Ramakrishnan, Praveen and MacLean, Michelle and MacGregor, Scott and Anderson, John and Grant, M. Helen (2014) Optimising 405 nm HINS light technology for patient safe decontamination during arthroplasty surgery. European Cells and Materials, 28 (S.4). p. 36. ISSN 1473-2262 ,

This version is available at https://strathprints.strath.ac.uk/50935/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
Optimising 405 nm hins-light technology for patient safe decontamination during arthroplasty surgery

Praveen Ramakrishnan1,2, Michelle Maclean2, Scott MacGregor2, John Anderson2, M. Helen Grant1*
1 Department of Biomedical Engineering, University of Strathclyde, Glasgow, Scotland, UK 2
The Robertson Trust Laboratory for Electronic Sterilisation Technologies, University of Strathclyde, Glasgow, Scotland, UK
p.ramakrishnan@strath.ac.uk

INTRODUCTION:
Infection rates following orthopaedic arthroplasty surgery are as high as 4%, while the infection rates are even higher after revision surgery 1. The duration of routine arthroplasty surgeries is typically between 1 and 2 hours. 405nm High-Intensity Narrow-Spectrum Light (HINS-light) has bactericidal activity against Hospital Acquired Infection (HAI) related bacterial pathogens including MRSA 2 and hence may aid in reducing the incidence of infections that arise from environmental contamination during arthroplasty surgery.

METHODS:
Immortalised rat osteoblast (OST 5) cells were exposed to 405 nm light at an irradiance of 5mW/cm2 in Dulbecco’s Phosphate Buffered Saline (DPBS) at different dose rates (18, 27, 36 and 45J/cm2) at 37˚C and 5% CO2. Unexposed controls were treated in the same way. After 48 hours post treatment, cell viability (MTT assay), cell function (ALP assay) and cell proliferation rate (BrdU assay) were measured. Live/Dead cell staining was carried out using Acridine Orange/ Propidium Iodide (AO/PI) dyes after 48 hours post light treatment. Statistical analysis was performed using unpaired Student t-test and differences considered significant when p<0.05.

RESULTS:
After 48 hours post light treatment, no significant difference was observed between the unexposed and 405 nm treated samples for up to a dose rate of 36J/cm2 in cell viability, function and proliferation rate (fig 1.a). More apoptotic and dead cells were observed for the 45J/cm2 exposed samples compared to the 36J/cm2 exposed samples (fig. 1.b).

DISCUSSION & CONCLUSIONS:
From the quantitative and qualitative studies, it is found that the cells were healthy for up to a dose rate of 36J/cm2 (5mW/cm2 for 2 hours) whilst cell death became evident with doses of 45J/cm2. These results suggest that exposure to a dose of 36J/cm2 may be suitable for use for continuous decontamination during orthopaedic surgery whilst being safe for tissue exposure.

REFERENCES:

ACKNOWLEDGMENTS:
P R is supported by a DTC studentship in Medical Devices from the EPSRC.