

Adaptive-window PMU algorithms using cascaded boxcar filters to meet and exceed C37.118.1(a) requirements

Dr. Andrew Roscoe

Workshop on "Synchrophasor estimation processes for Phasor Measurement Units: algorithms and metrological characterisation"

> Swiss Federal Institute of Technology of Lausanne (EPFL). December 9th 2014, Lausanne, Switzerland

The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union

ENG52 SmartGrid II

Contributors to recent and forthcoming work

Andrew Roscoe, University of Strathclyde

Bill Dickerson, Arbiter Systems

Steven Blair, University of Strathclyde ENG52 Researcher

http://personal.strath.ac.uk/steven.m.blair/

Ken Martin, Chair, IEEE Synchrophasor Working Group

 $F(f_M) > -3.098 \text{ dB}$

Reference vs. Tracking filter example f_0 =50, Reporting rate 50 Hz

Bandwidth test – TVE

Bandwidth testing

C37.118.1a-2014

F & ROCOF performance limits	Error requirements for Compliance					
	P Class			M Class		
Reporting Rate F _S (Hz)	F _r (Hz)	Max FE	Max RFE	F _r (Hz)	Max FE	Max RFE
10	1	0.03	0.6	2	0.12	2.3
12	1.2	0.04	0.8	2.4	0.14	3.3
15	1.5	0.05	1.3	3	0.18	5.1
20	2	0.06	2.3	4	0.24	9.0
25	2	0.06	2.3	5	0.30	14
30	2	0.06	2.3	5	0.30	14
50	2	0.06	2.3	5	0.30	14
60	2	0.06	2.3	5	0.30	14
Formulas	min(F _S /10,2)	0.03 *F _r	$0.18^*\pi^*F_r^2$	min(F _s /5,5)	0.06 *F _r	$0.18^{*}\pi^{*}F_{r}^{2}$

Bandwidth test – Frequency Error (FE) University of Strathclyde & ROCOF ERROR (RFE)

Reference vs. Tracking filter example f_0 =50, Reporting rate F_s =50 Hz

University of

Frequency error during OOB testing

Determining the required filter Mask for OOB testing

University of

Out-of-Band testing, $f=f_0$ All algorithms

University of

University of Out-of-Band testing, $f=f_0+\frac{F_S}{20}$ Strathclyde **Frequency-tracking algorithm** Minimum f_{IH} (upper) = $\left(f_0 + \frac{F_s}{2}\right)$ f_0 = Nominal frequency (Hz) f = Actual fundamental frequency (Hz) Minimum $(f_{IH} - f_T) = (f_0 + \frac{F_S}{2}) - (f_0 + \frac{F_S}{20}) = (0.9(\frac{F_S}{2}))$ $f_{\rm T}$ = Tuned frequency (Hz) Frequency in filter = $(f_{IH} - f_T)$ $\left(f_0 + \frac{F_S}{2}\right)$ Frequency $\left(f_0 - \frac{F_S}{2}\right)$ $f = f_T = f_0 + \frac{F_S}{20} \quad \text{Maximum } (f_{IH} - f) = \left(f_0 + \frac{F_S}{2}\right) - \left(f_0 + \frac{F_S}{20}\right) = \left(0.9\frac{F_S}{2}\right)$ Mask frequency width is reduced by 10% from $\left(\frac{F_s}{2}\right)$ but gain can be $20 \cdot log\left(\frac{1}{0.9}\right) = 0.92$ dB higher,

at the closest frequency, from what you might expect.

Simplified OOB requirements and examples, f_0 =50 Hz, F_S =50 Hz

Boxcar filter properties

Cascaded boxcar filters example, f_{θ} =50 Hz, F_{S} =50 Hz

University of

Example software architecture

Code execution speed

University of

Strathclv

- 30-60µs Typical execution time per frame for M class PMU (Motorola MVME5500). Supports >10kHz reporting.
- Calculation rate does NOT increase for longer-window (lower reporting rate) devices, as long as the NUMBER of cascaded boxcar filter sections is kept constant.
 - But fast-access memory requirement does (∝ Window length).
- Can easily be extended to "Harmonic PMU" applications.
 - # Calculations expand «N harmonics, memory expands «N harmonics and « Window length
- Compare with
 - Least Squares and "TFT" algorithms, # calculations proportional to window length
 - FFT algorithms for harmonic PMUs, # calculations proportional to (window length)*log(window length)
 - Kalman filter methods, # calculations proportional to the number of filter zeros squared (matrix multiplications).

Non-standard tests and real-world conditions

Unfinished work - Increased fault tolerance for frequency and ROCOF - 27th August 2013 example – P class

Power outage in Glasgow after worker hits live cable

The worker was injured after making contact with a live cable on a building site in Allan Glen Place

A worker has been injured after making contact with a live cable at a building site in Glasgow city centre.

Police Scotland said there was a short power outage in the north of the city following the incident at Allen Glen Place at about 12:00 on Tuesday.

The injured man was taken to nearby Glasgow Royal Infirmary. Details of his condition are not yet known.

Emergency services remain at the scene. The incident has been reported to the Health and Safety Executive.

Scottish Power officials are also at the scene.

It is understood that people in the area reported hearing a "loud bang and explosion" when the incident occurred. Output of the second second

University of

Strathclyde

The power supply was restored a short time later.

Unfinished work - Increased fault tolerance for frequency and ROCOF - 27th August 2013 example – P class

Power outage in Glasgow after worker hits live cable

The worker was injured after making contact with a live cable on a building site in Allan Glen Place

A worker has been injured after making contact with a live cable at a building site in Glasgow city centre.

Police Scotland said there was a short power outage in the north of the city following the incident at Allen Glen Place at about 12:00 on Tuesday.

The injured man was taken to nearby Glasgow Royal Infirmary. Details of his condition are not yet known.

Emergency services remain at the scene. The incident has been reported to the Health and Safety Executive.

Scottish Power officials are also at the scene.

It is understood that people in the area reported hearing a "loud bang and explosion" when the incident occurred.

The power supply was restored a short time later.

Unfinished work - Increased fault tolerance for frequency and ROCOF - 27th August 2013 example – P class

Power outage in Glasgow after worker hits live cable

he worker was injured after making contact with a live cable on a building site Allan Glen Place

worker has been injured after making contact with a live cat t a building site in Glasgow city centre.

olice Scotland said there was a short power outage in the north of the ty following the incident at Allen Gien Place at about 12.00 on Tuesday.

-100

0.6

0.8

he injured man was taken to nearby Glasgow Royal Infirmary. Details of s condition are not yet known.

mergency services remain at the scene. The incident has been re the Health and Safety Executive.

Scottish Power officials are also at the scene.

t is understood that people in the area reported hearing a "loud bang and explosion" when the incident occurred.

The power supply was restored a short time later.

1

Time (s)

1.2

1.4

1.6

University of

Future considerations/work:

- Implement in hardware!
- Continuing input to standards development.
- Accurate revenue metering.
- Synchronised Power Quality assessment and PQ "metering"!
- Combinations of adaptive and fixed boxcars to provide "Uniform Aggregated Weighting" (Welch's method) via repeated windows at fixed (i.e. 20ms) intervals, while also providing adaptive-zero-placement for off-nominal frequency.
- Integrating PMU algorithms within HVDC controllers?
- Aggregation of PMU ROCOF data across a geographically wide network to determine "system ROCOF" and required "inertial" responses.
 - "Enhanced Frequency Control Capability (EFCC)" with National Grid, Alstom, Belectric, Centrica, Flextricity & University of Manchester.

