Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Interfacial strength in thermoplastic composites - at last an industry friendly measurement method?

Thomason, J.L. (2002) Interfacial strength in thermoplastic composites - at last an industry friendly measurement method? Composites Part A: Applied Science and Manufacturing, 33 (10). pp. 1283-1288. ISSN 1359-835X

[img]
Preview
Text (strathprints005083)
strathprints005083.pdf
Accepted Author Manuscript

Download (74kB)| Preview

    Abstract

    Many elegant techniques have been developed for the quantification of composite micro-mechanical parameters in recent years. Unfortunately, most of these techniques have found little enthusiastic support in the industrial product development environment, where they are viewed as time consuming, complex, inefficient, labour intensive, and in many cases unproven or inapplicable in 'real' systems. Despite this reaction, there is a real need for a 'user-friendly' micro-mechanics to aid the composites industry to move to the next level of development. A method for deriving values for τ (the interfacial shear strength) and ηo (a fibre orientation factor) from a simple combination of the composite tensile stress-strain curve and the fibre length distribution has been available for some time. Despite the recent wealth of activity in the development of micro-mechanical test techniques, there has been little follow-up on this older technique. In this paper we explore this analysis by its application to injection moulded glass-fibre-reinforced thermoplastic composites produced using three matrices (polypropylene, polyamide 6,6 and polybutyleneterephthalate) and containing different levels of glass-fibre. We furthermore show how the analysis can be extended to obtain another important micro-mechanics parameter, σuf, the fibre stress at composite failure. Values of τ and ηo obtained using this improved version of the original model are presented and discussed.