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ROBUSTNESS AS SEMIDEFINITE PROGRAM

Inspired by the work of Pusey [1] and Skrzypczyk et
al. [2], we are going to prove that calculating the steering
robustness R(A) of an assemblage A = {ρa|x}a,x falls un-
der the umbrella of semidefinite programming (SDP) [3].

We recall that the steering robustness of A is defined
as

R(A) := min

{
t ≥ 0

∣∣∣∣ {ρa|x + t τa|x

1 + t

}
a,x

unsteerable,

{τa|x} an assemblage

}
, (1)

hence it corresponds to the minimum positive t such that

ρa|x = (1 + t)σUS

a|x − tτa|x, ∀a, x,

with {σUS

a|x}a,x an unsteerable assemblage and {τa|x}a,x
an arbitrary assemblage. Notice that, since {ρa|x}a,x and

{σUS

a|x}a,x are assemblages, τa|x =
(
(1 + t)σUS

a|x− ρa|x
)
/t is

automatically an assemblage as long as

(1 + t)σUS

a|x ≥ ρa|x, , ∀a, x. (2)

Since {σUS

a|x}a,x is unsteerable,

ρUS

a|x =
∑
λ

D(a|x, λ)σ(λ) ∀a, x, (3)

we can rewrite Eq. (2) as the condition

(1 + t)
∑
λ

D(a|x, λ)σλ ≥ ρa|x, ∀a, x,

where the σλ’s are subnormalized states, and the sum is
over all the deterministic strategies to output a given x.
If we consider that the factor (1 + t) can be absorbed
into the σλ’s (so that they are generally unnormalized,
rather subnormalized), we realize that R(A) + 1 can be
characterized as the solution to

minimize
∑
λ

Tr(σλ)

subject to
∑
λ

D(a|x, λ)σλ ≥ ρa|x ∀a, x

σλ ≥ 0 ∀λ

(4)

This is an example of SDP optimization problem [3]. For
our purposes, the primal problem of an SDP is an opti-
mization problem cast as

minimize 〈C,X〉
subject to Φ[X] ≥ B

X ≥ 0,

where:

• 〈C,X〉 is the objective function;

• B and C are given Hermitian matrices;

• X is the matrix variable on which to optimize;

• 〈X,Y 〉 := Tr(X†Y ) is the Hilbert-Schmidt inner
product;

• Φ is a given Hermiticity-preserving linear map.

The dual problem provides a lower bound to the objective
function of the primal problem. The dual problem is given
by

maximize 〈B, Y 〉
subject to Φ†[Y ] ≤ C

Y ≥ 0,

where Φ† is the dual of Φ with respect to the Hilbert-
Schmidt inner product, and Y is another matrix variable.

One says that strong duality holds when the optimal
values of the primal and dual problems coincide. Strong
duality holds in many cases, and in particular under the
Slater conditions that (i) the primal and dual problems
are both feasible, and moreover the primal problem is
strictly feasible, meaning that there is a positive definite
X > 0 such that Φ[X] > B, or (ii) the primal and dual
problems are both feasible, and moreover the dual prob-
lem is strictly feasible, meaning that there is a Y > 0
such that Φ†[Y ] < C. In case (i), not only do the primal
and dual values coincide, but there must exist Yopt that
achieves the optimal value for the dual problem; and sim-
ilarly, in the case (ii), there must exist Xopt that achieves
the optimal value in the primal problem.
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In our case

C = 11, B = diag(ρa|x)a,x,

Φ[X] = diag

(∑
λ

D(a|x, λ)Xλ

)
a,x

where diag(·)a,x indicates a block-diagonal matrix whose
diagonal blocks are labeled by a, x, and the Xλ’s are
the diagonal blocks of X, labeled by λ. Thus, we have

Φ†[Y ] = diag
(∑

a,xD(a|x, λ)Ya|x

)
λ
, and the dual of the

primal problem (4) reads

maximize
∑
a,x

Tr(Fa|xρa|x) (5a)

subject to
∑
a,x

D(a|x, λ)Fa|x ≤ 11 ∀λ (5b)

Fa|x ≥ 0 ∀a, x, (5c)

It is easy to verify that both Slater conditions hold
in our case. For instance, one can take σλ = 211 for

all λ, and Fa|x = 11
|X|+1 for all a, x, with |X| being

the number of possible values for x. Thus, there exist
Fa|x = F opt

a|x satisfying the constraints of Eq. (5) and

such that
∑
a,x Tr(Fa|xρa|x) = 1 +R(A).

We remark that the optimal Fa|x can always be chosen
to saturate (5b). That is, there is a deterministic strategy
D(a|x, λ) and a normalized pure state |φ〉 such that∑

a,x

D(a|x, λ)〈φ|Fa|x|φ〉 = 〈φ|11|φ〉 = 1 (6)

This is because otherwise it is always possible to increase
(in operator sense) some Fa|x’s, still maintaining the op-
timal value for the objective function (which is operator
monotone in the Fa|x’s).

DETAILS OF THE PROOF OF THEOREM 1

The claimed upper bound,

pcorr(IB ,MB→A, ρAB) ≤ (1 +RA→Bsteer (ρAB))pNE
corr(I),

can be proved using

pcorr(IB ,MB→A, ρAB) =
∑
a,x

TrB(Λ†Ba [NB
x ]ρa|x), (7)

and the definitions

RA→Bsteer (ρAB) := sup
MA

R(A), (8)

and (1):

pcorr(IB ,MB→A, ρAB)

=
∑
a,x

TrB(Λ†Ba [NB
x ]ρa|x)

≤ (1 +R(A))
∑
a,x

TrB(Λ†Ba [NB
x ]σUS

a|x)

−R(A)
∑
a,x

TrB(Λ†Ba [NB
x ]τUS

a|x)

≤ (1 +R(A))pNE
corr(I)

≤ (1 +RA→Bsteer (ρAB))pNE
corr(I).

On the other hand, suppose that MA = {Ma|x}a,x,
where a = 1, . . . , |A| and x = 1, . . . , |X|, is a measure-
ment assemblage on A such that the corresponding as-
semblage A = {ρa|x = TrA(MA

a|xρAB)}a,x is steerable.

Let Fa|x ≥ 0 be the operators optimal for (5), such that∑
a,x Tr(Fa|xρa|x) = 1+R(A). In the proof of Theorem 1

of the main text we defined subchannels Λa that act as

Λa[ρ] ={
α
∑|X|
x=1 Tr(ρFa|x)|x〉〈x| 1 ≤ a ≤ |A|

1
N Tr((11−

∑|A|
a=1 Λ†a[11])ρ)σ̂a |A|+ 1 ≤ a ≤ |A|+N,

(9)

where α = ‖
∑
a,x Fa|x‖−1∞ > 0, and the σ̂a,

a = |A| + 1, . . . , |A| + N , are arbitrary (normalized)
states in a two-dimensional subspace orthogonal to
span{|x〉 |x = 1, . . . , |X|}. It is immediate to check

that Tr
(∑|A|+N

a=1 Λa[ρ]
)

= Tr(ρ) (by construction), so

I = {Λa}a=1,...,|A|+N is an instrument for the channel∑|A|+N
a=1 Λa.
Let σAB be an arbitrary bipartite state on AB, and

let MAB→A = {Qa}B→Aa be an arbitrary one-way mea-
surement from B to A, i.e., QB→Aa =

∑
yM

′A
a|y ⊗ N

′B
y ,

to guess which subchannel was actually realized. Notice
that y in the latter expression potentially varies in an
arbitrary range, different from the range {1, . . . , |X|} for
the parameter x of the fixed measurement assemblage
MA. Nonetheless we observe that Λa = Π′X ◦ Λa for
a = 1, . . . , |A|+N , where ◦ is composition, and

Π′X [τ ] =

|X|∑
x=1

|x〉〈x|τ |x〉〈x|+ Π⊥τΠ⊥,

with Π⊥ the projector onto the two-dimensional space
orthogonal to span{|x〉 |x = 1, . . . , |X|} that supports
the arbitrary qubits states σ̂a, a = |A| + 1, . . . , |A| + N .
Also,

ΛBa [σAB ] =
1

N

σA − |A|∑
a′=1

TrB(ΛBa′ [σAB ])

⊗ σ̂Ba ,
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for a = |A|+ 1, . . . , |A|+N . This implies that, for what-
ever input σAB , the optimal QB→Aa can be chosen to have
the form

QB→Aa

=

{∑|X|
x=1M

′A
a|x ⊗ |x〉〈x|

B 1 ≤ a ≤ |A|
11A ⊗NB

a , |A|+ 1 ≤ a ≤ |A|+N,

(10)

with Π⊥NaΠ⊥ = Na, for |A| + 1 ≤ a ≤ |A| + N , a
POVM on the orthogonal qubit space. Omitting a de-
tailed and straightforward proof of this, we instead pro-
vide the following intuition: For the subchannels (9), the
best local measurement on the output probe is one that
first of all discriminates between the space span{|x〉 |x =
1, . . . , |X|} and the orthogonal qubit space. If the probe
is found in the space span{|x〉 |x = 1, . . . , |X|}, the probe
is then measured in the basis {|x〉 |x = 1, . . . , |X|} and
the result if forwarded to decide which measurement to
perform on the ancilla: this is optimal because, in this
subspace, the output probe is already dephased in the
basis {|x〉 |x = 1, . . . , |X|}. If the probe is instead found
in the orthogonal qubit space, there is no information
to be gained from the ancilla, since, for the state of the
probe to have support in the orthogonal qubit space, the
probe must have been discarded and prepared in one of
the random qubit states σ̂a. So, in this case, the ancilla is
necessarily decorrelated and its state independent of the
specific Λa, a = |A|+ 1, . . . , |A|+N , that has been real-
ized; thus the optimal guess about said Λa can be made
as soon as the output probe is measured.

Then, for an optimal MB→A = {QB→Aa }a of the form
(10), we find in general

pcorr(IB ,MB→A, σAB)

=

|A|+N∑
a=1

Tr(QB→Aa ΛBa [σAB ])

=

|A|∑
a=1

Tr(QB→Aa ΛBa [σAB ]) +

|A|+N∑
a=|A|+1

Tr(QB→Aa ΛBa [σAB ])

=

|A|∑
a=1

|X|∑
x=1

Tr(M ′Aa|x ⊗ |x〉〈x|BΛBa [σAB ])

+

1−
|A|∑
a=1

Tr(ΛBa [σAB ])

 1

N

|A|+N∑
a=|A|+1

Tr(Naσ̂a)

=

|A|∑
a=1

|X|∑
x=1

Tr(Λ†a[|x〉〈x|]σa|x)

+

1−
|A|∑
a=1

Tr(ΛBa [σAB ])

 1

N

|A|+N∑
a=|A|+1

Tr(Naσ̂a),

with σa|x = TrA(M ′a|xσAB). By construction it holds that

Λ†a[|x〉〈x|] = αFa|x for 1 ≤ a ≤ |A| and 1 ≤ x ≤ |X|,

therefore

pcorr(IB ,MB→A, ρAB)

= α

|A|∑
a=1

|X|∑
x=1

Tr(Fa|xσa|x)

+

1−
|A|∑
a=1

Tr(ΛBa [σAB ])

 1

N

|A|+N∑
a=|A|+1

Tr(Naσ̂a)

≤ α
|A|∑
a=1

|X|∑
x=1

Tr(Fa|xσa|x) +
2

N
.

(11)
In the last line we used1−

|A|∑
a=1

Tr(ΛBa [σAB ])

 ≤ 1

and

1

N

|A|+N∑
a=|A|+1

Tr(Naσ̂a) ≤ 1

N
Tr

 |A|+N∑
a=|A|+1

Na


≤ 1

N
Tr(Π⊥) =

2

N
. (12)

It is clear that if σAB = ρAB and M ′a|x = Ma|x in (10),
so that σa|x = ρa|x, then we have

1 +R(A) ≤ pcorr(IB ,MB→A, ρAB) ≤ 1 +R(A) +
2

N
.

It remains to prove that

α ≤ pNE
corr(I) ≤ α+

2

N
. (13)

This is readily verified by considering that (5b) can be
saturated, as argued at the end of the previous section
(see (6)), for an optimal solution of the SDP problem. So
we have that for some deterministic D(a|x, λ) and some
uncorrelated input state |φ〉 to the channel,

1 =

|A|∑
a=1

|X|∑
x=1

D(a|x, λ)〈φ|Fa|x|φ〉

=
1

α

|A|∑
a=1

|X|∑
x=1

D(a|x, λ)〈φ|Λ†a[|x〉〈x|]|φ〉

=
1

α

|A|∑
a=1

Tr

 ∑
x:D(a|x,λ)=1

|x〉〈x|

Λa[|φ〉〈φ|]


=

1

α

|A|∑
a=1

Tr (M ′′aΛa[|φ〉〈φ|]) ,

having defined M ′′a :=
∑
x:D(a|x,λ)=1 |x〉〈x|. Considering

also the subchannels Λa, a = |A| + 1, . . . , |A| + N , and
bounding their contribution to the probability of success
as in (11), we arrive at (13).
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ON THE SCALING OF THE STEERABILITY OF
MAXIMALLY ENTANGLED STATES

We have argued that RA→Bsteer (ρAB) ≤ Rg(ρAB), where
Rg(ρAB) is the generalized entanglement robustness

Rg(ρAB) = min
{
t ≥ 0

∣∣∣ ρAB + t τAB
1 + t

separable, τ a state
}
.

Indeed, let τAB be optimal for the generalized entangle-
ment robustness, i.e., suppose

σAB =
ρAB +Rg(ρAB)τAB

1 +Rg(ρAB)

is separable. Then σa|x = TrA(Ma|xσAB) is unsteerable
for any measurement assemblage {Ma|x}a,x, proving that
Rg(ρAB) is an upper bound to RA→Bsteer (ρAB) (see Eq. (8)).
This means that, if a state is weakly entangled with re-
spect to Rg, it is also weakly steerable with respect to
RA→Bsteer . In [4] it was proven that, for any bipartite pure
state

|ψ〉AB =
∑
i

√
pi|i〉A|i〉B ,

here in its Schmidt decomposition, the generalized entan-
glement robustness is equal to

Rg(|ψ〉〈ψ|AB) =

(∑
i

√
pi

)2

− 1 = 2N (|ψ〉〈ψ|AB),

where N is the negativity of entanglement [5]. In partic-
ular, then, for a maximally entangled state in dimension
d× d, |ψ+

d 〉AB = 1√
d

∑d
i=1 |i〉A|i〉B , one has

RA→Bsteer (ψ+
d,AB) ≤ Rg(ψ+

d,AB) = d− 1,

having used the notation ψ+
d,AB = |ψ+

d 〉〈ψ
+
d |AB .

We conclude by providing a lower bound on
RA→Bsteer (ψ+

d,AB) for d a power of a prime number. We will
use techniques similar to the ones used in the examples
of [6].

Fix d to be the power of a prime number. Then we
know that there there are d+ 1 mutually unbiased bases,
i.e., d+ 1 orthonormal sets {|ψa|x〉}a=1,...,d, one for each
x = 1, . . . , d+ 1, such that [7]

|〈ψa|x|ψb|y〉| =

{
δa,b x = y
1√
d

x 6= y

We will consider a measurement assemblage {Ma|x =

|ψa|x〉〈ψa|x|}a,x. Suppose ρAB = ψ+
d,AB . We have

ρBa|x = TrA(MA
a|xψ

+
d,AB) =

1

d
|ψ∗a|x〉〈ψ

∗
a|x|

Here |ψ∗a|x〉 indicates orthonormal vectors whose coeffi-

cients in the local basis {|i〉B} are the complex conjugate

of the coefficients of |ψa|x〉 in the local basis {|i〉A}. Thus,
the bases {|ψ∗a|x〉}a=1,...,d are still mutually unbiased.

We want to lower bound the steering robustness of
{ρBa|x}a,x, which in turn will give us a lower bound on

RA→Bsteer (ψ+
d,AB). To do this, we use a specific choice for

the Fa|x’s in (5). We choose Fa|x = β|ψ∗a|x〉〈ψ
∗
a|x|, where

β > 0 will be fixed to satisfy (5b) (condition (5c) is sat-
isfied for any β ≥ 0), i.e.,∥∥∥∥∥∑

a,x

D(a|x, λ)Fa|x

∥∥∥∥∥
∞

≤ 1

for all deterministic D(a|x, λ). With our choice of Fa|x,
this can be achieved by taking

β ≤

(
max
λ

∥∥∥∥∥∑
x

|ψ∗fλ(x)|x〉〈ψ
∗
fλ(x)|x|

∥∥∥∥∥
∞

)−1
(14)

where the maximum is over all functions fλ : {1, . . . , d+
1} → {1, . . . , d}, labeled by λ. To estimate the right hand
side of (14), we will use the fact [8] that, for

|γ〉CD =

d+1∑
x=1

|ψ∗fλ(x)|x〉C |x〉D,

where {|x〉}x=1....,d+1 is an orthonormal basis, the spec-
trum of

TrD(|γ〉〈γ|CD) =
∑
x

|ψ∗fλ(x)|x〉〈ψ
∗
fλ(x)|x|.

is the same as the spectrum of

TrC(|γ〉〈γ|CD) =
∑
x,y

〈ψ∗fλ(x)|x|ψ
∗
fλ(y)|y〉|y〉〈x|

=
∑
x

|x〉〈x|+ 1√
d

∑
x 6=y

eiφx,y |y〉〈x|

=

(
1− 1√

d

)
11 +

1√
d

∑
x,y

eiφx,y |y〉〈x|

where φx,y are real numbers representing phases. Thus,
we have∥∥∥∥∥∑

x

|ψ∗fλ(x)|x〉〈ψ
∗
fλ(x)|x|

∥∥∥∥∥
∞

=

∥∥∥∥∥∑
x,y

〈ψ∗fλ(x)|x|ψ
∗
fλ(y)|y〉|y〉〈x|

∥∥∥∥∥
∞

≤
(

1− 1√
d

)
+

1√
d

∥∥∥∥∥∑
x,y

eiφx,y |y〉〈x|

∥∥∥∥∥
∞

≤
(

1− 1√
d

)
+

1√
d

∥∥∥∥∥∑
x,y

eiφx,y |y〉〈x|

∥∥∥∥∥
2

=

(
1− 1√

d

)
+

1√
d

(d+ 1)

= 1 +
√
d.
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Since this estimate is independent of λ, we can take β =
1/(
√
d+ 1). Hence, we conclude that, for d the power of

a prime number,

RA→Bsteer (ψ+
d,AB)

≥ R
({

1

d
|ψ∗a|x〉〈ψ

∗
a|x|
})

≥
∑
a,x

Tr

((
1

d
|ψ∗a|x〉〈ψ

∗
a|x|
)(

1√
d+ 1

|ψ∗a|x〉〈ψ
∗
a|x|
))
− 1

=
1

d(
√
d+ 1)

(d(d+ 1))− 1

=
√
d

√
d− 1√
d+ 1

≥
√
d− 2.

(15)
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