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We consider a film of SmC* liquid crystal with its layers parallel to an applied
electric field. The liquid crystal is assumed to align uniformly under the influence
of the field, except along domain walls. By employing a nonlinear continuum
theory for smectic liquid crystals we can examine the width of domain walls per-
pendicular and parallel to the field. We obtain predictions for the wall widths
based on the elastic constants and dielectric properties of the SmC* liquid crystal.
Exact analytical expressions for the wall widths are obtained by assuming series
expansions in the elastic anisotropy and dielectric parameters.
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INTRODUCTION

It is known that surface tension can induce a smectic film at the sur-
face of an isotropic liquid crystal droplet, see for example Swanson
et al. [1]. The molecules within the smectic layers can also orientate
uniformly under the influence of an applied electric field in the plane
of the smectic layers, except possibly along domain walls. Candel and
Galerne [2] examined the widths of these walls in smectic O (SmO)
liquid crystals. In particular, they compared the ratio of theoretical
wall widths (obtained via an approximation of the governing equations
for director twist) with experimental data in order to derive infor-
mation about the influence of anisotropy in the elastic constants upon
the induced SmO film.
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Here we adopt a similar approach to Candel and Galerne [2], except
that we consider domain walls within ferroelectric SmC* liquid crystal
films. We determine an analytical expression for the ratio of wall
widths that is dependent upon both dielectric anisotropy and the ani-
sotropy of the twist smectic elastic constants, as employed in the
theory introduced by Leslie et al. [3]. Numerical predictions for the
wall widths can be determined via analysis of the director equations
followed by numerical quadrature, or through power series expansions
in the anisotropy and dielectric parameters.

MODEL

We consider a film of SmC* liquid crystal with its layers perpendicular
to the z-direction, as shown in Figure 1, and a domain wall in the
x-direction. An electric field is applied in a direction parallel to the
smectic layers which may be either parallel or perpendicular to
the domain wall. We model the behaviour of the liquid crystal under
the influence of this field by employing the continuum theory for smec-
tics contained in [3]. The SmC* liquid crystal is assumed to be incom-
pressible and in the isothermal state. The smectic cone angle 0 is
therefore fixed and the interlayer spacing is constant. The (unit) director
representing the average molecular axis may be written as
n=acos 0+ csin 0 where a is the unit normal vector for the smectic
layer and ¢ = (cos ¢p(x), sin ¢(x), 0) is the unit orthogonal projection
of n onto the smectic layers where ¢(x) is the orientation angle of the
vector ¢ within the xy-plane. As we will see shortly, it is also convenient
to introduce unit vector b = a x ¢. Knowledge of the orientation of ¢
completely determines the sample alignment when a is fixed.

FIGURE 1 Description of vectors a, ¢ and the smectic film with its layer nor-
mals parallel to the z-direction. We consider electric fields applied in the x and
y-directions.
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The energy density for smectic C liquid crystals presented by Leslie
et al. [3] can be described in terms of five basic deformations and
involves nine elastic constants. However, for the geometry and direc-
tor configuration considered here, the SmC* elastic energy density,
fe, simplifies to

2
fo= %Bl(v -b)® + %Bg(v o) = % (B1 cos® ¢ + By sin® ) (‘;—D .
The positive elastic constants B; and By are related to twist deforma-
tions of the director within the smectic plane (see Stewart [4]). Our
aim is to examine and obtain measurements for the anisotropy of these
constants. With this in mind, we introduce a dimensionless measure of
anisotropy, ¢, by assuming B; =B(1—¢) and By =B(1+¢) with
|| < 1. The elastic energy density now corresponds to

2
[ = %B(l — ¢cos2¢) (i—f) .

In general, SmC* liquid crystals possess a spontaneous polarisation P
which, in terms of the model for SmC* described here, can be written
as a vector parallel to the vector b,

P = Pyb = Py(—sin ¢(x), cos ¢(x), 0),

for constant magnitude Py. (Py > 0 corresponds to the usual sign con-
vention for positive polarisation.) The spontaneous polarisation now
contributes to the total energy density via

f,=—P-E.
Further, the dielectric energy density for the ferroelectric can be

expressed in terms of vectors a and ¢ as

1
fu= _§€OEa(a .Ecos0+ c- Esin0)?,

where ¢y is the permittivity of free space and ¢, is the dielectric ani-
sotropy. Therefore, the total overall energy density for our system is

F=fetlh+fa
1 d¢\? .
=_-B(1—¢cos2¢)| 5| +Po(E,sin¢ — E, cos ¢)
2 dx
- %eoea sin® 0(E, cos ¢ + E, sin ¢)?, (1)

where we have assumed that E = (E,, E,, 0) is parallel to the smectic
layers. In the following sections we will consider an applied electric
field either perpendicular or parallel to the domain wall. These
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configurations correspond to E = E(1, 0, 0) or E = E(0, 1, 0), respect-
ively, where E is the magnitude of the field.

ELECTRIC FIELD PERPENDICULAR TO THE DOMAIN WALL

Figure 2 illustrates the direction of the spontaneous polarisation P
and director ¢ within a smectic layer under the influence of a field
applied perpendicular to the domain wall. Recall that ¢ is the unit pro-
jection of the director n onto the smectic later. Therefore, the rotation
of ¢ within the xy-plane mirrors the twist behaviour of the director n.

In this geometry E, = E, E, = 0 and from Eq. (1) the total energy
density is

d¢

1 z
F = §B(1 — &cos2¢) (a

2
1

) +PoEsin ¢ — §eoeaE2 cos® psin®0.  (2)

Equilibrium director profiles within the smectic film correspond to

minima of the total free energy. These profiles are derived from solu-

tions of the Euler-Lagrange equations corresponding to Eq. (2), namely

2
(1—¢cos2p)d” + E(¢) % sin 24 —Igcos b — %sm2 0sin ¢ cos ¢ = 0,
(3)
Y <
P ) L 0(1) }
— X 1t 7
\/ N7 .
C
o(x)

FIGURE 2 27-rotation of the director ¢ in the domain wall perpendicular to E.
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where / denotes a derivative with respect to x. Domain wall solutions to
Eq. (3) will now be determined. Such walls will be over an infinite
domain in x and centred at x = 0, subject to the boundary conditions

3
¢—>?nasx—>—oo, ¢—>—gasx—>oo, ¢’ —0asx— too, (4)

so that we are seeking 2r7-domain walls. As indicated in Figure 2, the
width of the domain wall, w , is defined to be the length over which
the director twist changes from ¢ ==n/4 to 3n/4, i.e., one quarter of
the total domain wall. Multiplying Eq. (3) by ¢', integrating over the
width of the wall and employing the boundary conditions (4), we can
derive a formula for the domain wall width, namely

/3n/4 1— éCOSZd) 1/2d¢ (5)
2PE /., 1 +sin¢ + /cos? ¢ ’

where A= —¢pc,E sin 6/ (2Py). Although it is an exact formula for the
wall width, the integrand in Eq. (5) cannot be integrated analytically
with respect to ¢. However, since || < 11t is possible to expand the inte-
grand as a multivariate power series in ¢ and / whenever || <24 v/2,
showing that

B <~x~(} 3 nom [2/* cos™ 2¢cos?
z m —d
2PoEZZ< )( > Y /n/4 (+singy 2

n=0m=0

where N is the order of the expansion in both variables. (The width w
defined in Eq. (5) is equivalent to that given in Eq. (6) in the limit as
N — o0.) Unlike Eq. (5), the integrals that appear in Eq. (6) can be eval-
uated analytically for any non-zero integers m and n. Therefore, for
|cocq|Esin® 0 < (4+2v/2)Py and a suitable choice of N, Eq. (6) provides
an accurate approximate value for the domain wall width. (The full ser-
ies is exact when || <2 ++/2.)

ELECTRIC FIELD PARALLEL TO THE DOMAIN WALL

We now consider an electric field applied in a direction parallel to the
domain wall, see Figure 3. From Eq. (1) the total energy density in this
case (with E, =0,E, =E) is

1 . do\? 1 o . 9. .9
f:EB(l—gCOSZQS) I —PoEcos¢—§egeaE sin“ ¢ sin” 0.
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FIGURE 3 27n-rotation of the director ¢ in the domain wall parallel to E.

The corresponding Euler-Lagrange equations for minimisation of the
free energy are

2
(1—¢cos2d)d” + E(¢')?sin24 —E%sm(p +%sm2 fsin ¢ cosd = 0.

The width of the domain wall, w), can now be calculated via a pro-
cedure analogous to that employed in the previous section. We assume
that far from the domain wall,

—2nasx — —o0 —0asx— o "> 0asx — +oo.
b b

The wall width itself is defined as the region between ¢ =3n/4 to
¢ =57n/4, as shown in Figure 3. The exact integral formula and power
series expansion obtained in this way are

5”/4 1—-¢cos2 1/2
w)= / A ¢ 2 ) d¢ (7)
2PoE J3:/4 \1—cos¢+ isin® ¢

a z;() (o

5n/4 . .n 2m
></ cos” 2¢ sin ¢d¢, (8)
3

/4 (1—cosp)™ /2
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where Eq. (8) is valid for |¢| <1 and |i| <2++/2 (via a similar argu-
ment to the previous section). As before, this double series is exact
for these ranges of ¢ and 1 when N — co. Furthermore, the integrals
in Eq. (8) can be calculated analytically.

WALL WIDTH RATIO

We can now combine the results of Egs. (5), (7) to obtain an expression
for the ratio of domain wall widths obtain for the two choices of electric
field, namely

wy _ JEHH(1 - £cos2¢)/(1 + sin ¢ + J cos? ¢)"dg

w 35://;1(1 — ¢c0s2¢)/(1 — sin ¢ + 2 sin® ¢)1/2d¢.

9)

We recall that 4 = —¢y¢,E sin? 0/(2Py) and ¢ is a measure of the ani-
sotropy between the two twist elastic constants. Alternatively, the

9P E/B x width

FIGURE 4 Wall widths for an electric field applied perpendicular, w,, and
parallel, w|, to the domain wall as the measure of elastic anisotropy varies.
(----): dielectric anisotropy ¢, = 0, (——): dielectric anisotropy ¢, = —10.
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FIGURE 5 Ratio of wall widths w, and w| as anisotropy ¢ varies. (----):
dielectric anisotropy ¢, = 0, (——): dielectric anisotropy ¢, = —10.

width ratio may be approximated as the ratio of the series derived in
Eqgs. (6) and (8).

For known material properties and a fixed electric field magnitude,
the ratio given in Eq. (8) (or the equivalent approximate power series
form) may be determined as a function of the anisotropy ¢ between
elastic constants. Significantly, unlike previous analyses, the ratio
(9) incorporates the influence of the dielectric properties of the ferro-
electric material.

In Figures 4 and 5 we employ numerical quadrature to calculate the
wall widths obtained in Egs (5) and (7) for the following material para-
meters: 0 =20°, E=20Vum!, Py =100uCm 2, ¢, = 8.854 x 1012
Fm™! (Stewart [4]). These parameter values correspond to A = 2.135.
From Figure 4 we observe that the dielectric anisotropy reduces
the size of both the perpendicular and parallel wall widths. However,
in Figure 5 the influence of the dielectric anisotropy upon the width
ratio is relatively small except when the elastic anisotropy is large.
Figure 4 also indicates that the perpendicular width increases with
elastic anisotropy while the parallel width decreases, therefore the
ratio of wall widths increases significantly as elastic anisotropy
increases.
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