Picture of mobile phone running fintech app

Fintech: Open Access research exploring new frontiers in financial technology

Strathprints makes available Open Access scholarly outputs by the Department of Accounting & Finance at Strathclyde. Particular research specialisms include financial risk management and investment strategies.

The Department also hosts the Centre for Financial Regulation and Innovation (CeFRI), demonstrating research expertise in fintech and capital markets. It also aims to provide a strategic link between academia, policy-makers, regulators and other financial industry participants.

Explore all Strathclyde Open Access research...

Aerodynamic design optimization of wind turbine rotors under geometric uncertainty

Campobasso, M. Sergio and Minisci, Edmondo and Caboni, Marco (2016) Aerodynamic design optimization of wind turbine rotors under geometric uncertainty. Wind Energy, 19 (1). pp. 51-65. ISSN 1095-4244

[img] PDF (Minisci-et-al-Wind-Energy-2015-Aerodynamic-design-optimization-of-wind-turbine-rotors-under-geometric-uncertainty-Nov-2014)
Accepted Author Manuscript
License: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 logo

Download (238kB)


Presented is a robust optimization strategy for the aerodynamic design of horizontal axis wind turbine rotors including the variability of the annual energy production due to the uncertainty of the blade geometry caused by manufacturing and assembly errors. The energy production of a rotor designed with the proposed robust optimization approach features lower sensitivity to stochastic geometry errors with respect to that of a rotor designed with the conventional deterministic optimization approach that ignores these errors. The geometry uncertainty is represented by normal distributions of the blade pitch angle, and the twist angle and chord of the airfoils. The aerodynamic module is a blade-element momentum theory code. Both Monte Carlo sampling and the univariate reduced quadrature technique, a novel deterministic uncertainty analysis method, are used for uncertainty propagation. The performance of the two approaches is assessed in terms of accuracy and computational speed. A two-stage multi-objective evolutionbased optimization strategy is used. Results highlight that, for the considered turbine type, the sensitivity of the annual energy production to rotor geometry errors can be reduced by reducing the rotational speed and increasing the blade loading. The primary objective of the paper is to highlight how to incorporate an efficient and accurate uncertainty propagation strategy in wind turbine design. The formulation of the considered design problem does not include all the engineering constraints adopted in real turbine design, but the proposed probabilistic design strategy is fairly independent of the problem definition and can be easily extended to turbine design systems of any complexity.