Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Initially tensioned orthotropic cylindrical shells conveying fluid: a vibration analysis

Zhang, Y.L. and Reese, J.M. and Gorman, D.G. (2002) Initially tensioned orthotropic cylindrical shells conveying fluid: a vibration analysis. Journal of Fluids and Structures, 16 (1). pp. 53-70. ISSN 0889-9746

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A linear analysis of the vibratory behaviour of initially tensioned orthotropic circular cylindrical shells conveying a compressible inviscid fluid is presented. The model is based on the three-dimensional nonlinear theory of elasticity and the Eulerian equations. A nonlinear strain-displacement relationship is employed to derive the geometric stiffness matrix due to initial stresses and hydrostatic pressures. Frequency-dependent fluid mass, damping and stiffness matrices associated with inertia, Coriolis and centrifugal forces, respectively, are derived through the fluid-structure coupling condition. The resulting equation governing the vibration of fluid-conveying shells is solved by the finite element method. The free vibration of initially tensioned orthotropic cylindrical shells conveying fluid is investigated; numerical examples are given and discussed.