
This version is available at https://strathprints.strath.ac.uk/50628/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
Evaluation and calibration of Aeroqual series 500 portable gas sensors for accurate measurement of ambient ozone and nitrogen dioxide

C. Lin, J. Gillespie, M.D. Schuder, W. Duberstein, I.J. Beverland, M.R. Heal

School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JF, UK
Department of Civil and Environmental Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, UK
Department of Chemistry, Carroll University, Waukesha, WI 53186, USA

Abstract

Low-power, and relatively low-cost, gas sensors have potential to improve understanding of intra-urban air pollution variation by enabling data capture over wider networks than is possible with ‘traditional’ reference analysers. We evaluated an Aeroqual Ltd. Series 500 semiconducting metal oxide O₃ and an electrochemical NO₂ sensor against UK national network reference analysers for more than 2 months at an urban background site in central Edinburgh. Hourly-average Aeroqual O₃ sensor observations were highly correlated (R² = 0.91) and of similar magnitude to observations from the UV-absorption reference O₃ analyser. The Aeroqual NO₂ sensor observations correlated poorly with the reference chemiluminescence NO₂ analyser (R² = 0.02), but the deviations between Aeroqual and reference analyser values ([NO₂]ₐeroq − [NO₂]ref) were highly significantly correlated with concurrent Aeroqual O₃ sensor observations ([O₃]ₐeroq). This permitted effective linear calibration of the [NO₂]ₐeroq data, evaluated using ‘hold out’ subsets of the data (R² ≥ 0.85). These field observations under temperate environmental conditions suggest that the Aeroqual Series 500 NO₂ and O₃ monitors have good potential to be useful ambient air monitoring instruments in urban environments provided that the O₃ and NO₂ gas sensors are calibrated against reference analysers and deployed in parallel.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Ozone (O₃) and nitrogen dioxide (NO₂) are important air pollutants subject to mandatory air quality limits in many jurisdictions. Road traffic and static combustion are major sources of the NO₂ gases (NO and NO₂) leading to pronounced spatiotemporal gradients in NO₂ in urban areas (Cyrys et al., 2012). As a consequence of the fast photochemical cycling between NO₃ and O₃, concentrations of O₃ also exhibit strong spatiotemporal variability in urban areas (McConnell et al., 2006; Malmqvist et al., 2014). At present, NO₂ and O₃ are measured using expensive, but traceably-calibrated, fixed-site monitors in sparse networks, or via passive diffusion samplers (Martin et al., 2010; Matte et al., 2013). The former lack spatial resolution, whilst the latter lack temporal resolution.

The development of low-power gas-sensitive semiconductor and electrochemical technology has potential to improve understanding of intra-urban air pollution variation by enabling simultaneous data capture, at lower net cost, over wide urban networks (Mead et al., 2013; Williams et al., 2013; Bart et al., 2014), and via peripatetic and mobile sampling designs (Abernethy et al., 2013; Saraswat et al., 2013). However, the quality of the data generated by these monitors compared with established techniques remains a concern (Snyder et al., 2013), in particular interference in the sensing of NO₂ by O₃ (Williams et al., 2009; Mead et al., 2013). One such type of monitor is the Aeroqual Ltd. Series 500 ENV portable gas monitors (www.aeroqual.com/category/products/handheld-monitors). These are relatively compact and lightweight (460 g), and can be operated from an inbuilt battery (for ~8 h) or from mains power. Interchangeable metal oxide semiconductor and electrochemical sensors permit continuous monitoring at a range of mixings (Williams et al., 2009). The Aeroqual monitors are a factor of approximately 5–10 times lower cost than standard air quality monitoring instrumentation for these gases.

In this study, we evaluated the capabilities of two Aeroqual Series 500 portable gas monitors, one with a semiconductor oxide O₃ sensor (OZU 0–0.15 ppm) and one with an electrochemical NO₂ sensor (E-800X).
sensor (GSE 0-1 ppm), to measure ambient concentrations of these gases in Edinburgh, UK. We demonstrate the applicability of a linear calibration for the NO\textsubscript{2} sensor using parallel measurements of the O\textsubscript{3} sensor and deployment of both against reference instruments.

2. Methods

The two Aeroqual monitors were placed under a weatherproof plastic shelter at ~1.5 m elevation above the ground on a post adjacent to the cabin housing the O\textsubscript{3} and NO\textsubscript{2} reference gas analysers of the Edinburgh St. Leonard’s air quality monitoring station (55.946°N, 3.182°W). The site is near the centre of the city of Edinburgh, UK, and is classified as urban background in the UK national network (http://uk-air.defra.gov.uk/data). The air inlet for the reference analysers was approximately 1.8 m horizontal distance from and 1.2 m higher than the Aeroqual monitors. The Aeroqual sensor inlets were positioned so that the sensor heads were level with the lower edge of the waterproof shelter and sampled freely flowing ambient air in close vicinity to the reference analysers. The monitoring location was approximately 30 m from the nearest road (with no other primary pollutant sources nearby) hence any differences in pollution concentrations resulting from the small separation distance between the reference analyser and Aeroqual monitor inlets were anticipated to be minor in the comparison of observed concentrations. The Aeroqual units were used as received, with mains power; the waterproof enclosure available from Aeroqual was not used. An Onset HOBO U23 Pro v2 External Data Logger (with solar radiation shield) was also attached to the shelter to record ambient T and RH at 1 min resolution.

The Aeroqual monitors were programmed to record 5-min average concentrations of NO\textsubscript{2} and O\textsubscript{3} continuously between 7th

![Graph](image-url)

Fig. 1. (a) Time series, and (b) scatter plot, of hourly-averaged [O\textsubscript{3}] from measurements made by the Aeroqual O\textsubscript{3} monitor and the O\textsubscript{3} UV absorption analyser between 7 June and 15 August 2013 (1274 pairs of hourly averages).
June and 15th August 2013. Data were downloaded to a laptop every two weeks, at which time the internal clocks of both monitors were synchronised via the Aeroqual software with the laptop, which was in turn regularly synchronised with Internet Time Servers.

Time stamps for the 5-min averages downloaded from the Aeroqual monitors were adjusted from BST to GMT. The 5-min averages were aggregated to hourly means, denoted as [NO$_2$]$_{\text{Aeroq}}$ and [O$_3$]$_{\text{Aeroq}}$. No data capture threshold was set for the averaging.

The NO$_2$ reference instrument was an EnviroTechnology Model 200E chemiluminescence analyser (range 0–20 ppm, precision 0.5%) and the O$_3$ reference instrument was an EnviroTechnology Model 400E photometric analyser (range 0–10 ppm, precision <0.5%). Both instruments were maintained and calibrated in accordance with the QA/QC protocol for the UK ambient air quality monitoring network (http://uk-air.defra.gov.uk/networks/network-info?view=urn). All data from the reference analysers were subject to the network data review and ratification process. Hourly-averaged NO$_2$ and O$_3$ derived from these instruments were downloaded from www.scottishairquality.co.uk, and are denoted as [NO$_2$]$_{\text{ref}}$ and [O$_3$]$_{\text{ref}}$.

3. Results and discussion

The ambient hourly T (range: 10–33 °C; mean ± sd: 19 ± 4 °C) in this study was within the operating range of the Aeroqual sensors (−5–45 °C). The vast majority of the hourly RH measurements (29–97%; 69 ± 17%) were also in the sensor operating range of 0–95% (<3% of hourly RH measurements were in the range 95–97%).

Fig. 1 shows the time series and scatter plot of hourly averaged O$_3$ data. The Aeroqual and UV-absorbance reference analyser O$_3$

![Fig. 2.](image-url)
data were highly correlated ($R^2 = 0.91, n = 1274$), albeit with a trend for this Aeroqual O$_3$ sensor to overestimate on average compared with the reference instrument when O$_3$ concentrations from the latter exceeded ~43 ng m$^{-3}$ (e.g. an Aeroqual value of 86 ng m$^{-3}$ for a reference instrument value of 80 ng m$^{-3}$), and to underestimate on average for concentrations below a reference instrument O$_3$ concentration of ~43 ng m$^{-3}$ (e.g. 16 ng m$^{-3}$ Aeroqual value for a reference instrument value of 20 ng m$^{-3}$). These small systematic differences are readily corrected for by application of the linear relationship shown in the figure.

In contrast, the time series and scatter plot in Fig. 2 show very limited agreement between the Aeroqual NO$_2$ sensor and the reference NO$_2$ chemiluminescence analyser ($R^2 = 0.02$, and sensor overestimation compared with the reference analyser by approximately 3-fold on average). In contrast, a closer correspondence of an Aeroqual gas-sensitive semiconductor (GSS) NO$_2$ sensor and reference analyser observations was reported in a similar comparison by Delgado-Saborit (2012) ($\text{[NO}_2\text{]}_{\text{Aeroq(GSS)}} = 0.76 \text{[NO}_2\text{]}_{\text{ref}} + 7.05; R^2 = 0.89$).

Some sensitivity of gas sensors to ambient water vapour has previously been noted (Bart et al., 2014). Fig. 3 shows the relationships between the deviations in the observations of both Aeroqual sensors from their respective reference analyser values and the ambient RH recorded by the HOBO logger. Although the deviations of both sets of Aeroqual values appear to show some trends with RH, these are very weak and the correlations correspondingly poor ($R^2 = 0.02$ and 0.01, for NO$_2$ and O$_3$, respectively), and over a range in ambient RH from ~30% to almost 100%. The negative relationship with RH for the O$_3$ sensor is consistent with the observations of Bart et al. (2014), although the latter present a slightly greater negative trend, albeit with considerable scatter as is the case with our data. We observe a small, but again non-significant, positive trend between Aeroqual NO$_2$ deviations and RH. Overall, we conclude that any systematic impact of RH on our sensor bias and imprecision is limited. In particular, there is no obvious systematic relationship of Aeroqual electrochemical NO$_2$ sensor observations with RH that might account for the limited agreement between NO$_2$ sensor and NO$_2$ reference analyser observations. There were similar lack of associations between ‘Aeroqual – reference analyser’ O$_3$ and NO$_2$ deviations and ambient T (data not shown).

Instead, we examined whether the substantial deviation of Aeroqual electrochemical sensor NO$_2$ measurement from the reference measurement may have been driven by interference from ambient O$_3$. We used the first two-thirds of the measured data (between 7 June and 24 July) as a ‘test’ dataset to investigate this. Fig. 4 shows the plot of (\([\text{NO}_2\text{]}_{\text{Aeroq-C}}\) against \([\text{O}_3\text{]}_{\text{Aeroq}}\) for these data, indicating a highly significant linear correlation ($R^2 = 0.92, n = 849$) up to the maximum \([\text{O}_3\text{]}_{\text{Aeroq}}\) observation of almost 100 ng m$^{-3}$ in this dataset. The OLS linear regression relationship from the data in Fig. 4 was used to derive calibrated hourly \([\text{NO}_2\text{]}_{\text{Aeroq-C}}\) data from the original \([\text{NO}_2\text{]}_{\text{Aeroq}}\) and \([\text{O}_3\text{]}_{\text{Aeroq}}\) data for the remaining one-third of the study period (25 July to 15 August). The time series and scatter plot of the \([\text{NO}_2\text{]}_{\text{Aeroq-C}}\) values with the reference data are shown in Fig. 5. The major axis linear regression (which allows for uncertainty in both sets of data) shows close agreement between calibrated Aeroqual NO$_2$ data and reference instrument observations for this test dataset with a correlation coefficient, $r = 0.94 (R^2 = 0.88)$, a slope not significantly different from unity (95% confidence interval: 0.99, 1.07) and an intercept very close to zero (95% CI: –1.8, –0.4) (Fig. 5). Only 13 negative values of \([\text{NO}_2\text{]}_{\text{Aeroq-C}}\) out of 425 (~3% of the ‘test’ dataset) were generated in this calibration.

Neither the differences (\([\text{NO}_2\text{]}_{\text{Aeroq}} \text{–} \text{[NO}_2\text{]}_{\text{ref}}\) plotted in Fig. 4, nor the differences between the \([\text{NO}_2\text{]}_{\text{Aeroq-C}}\) and \([\text{NO}_2\text{]}_{\text{ref}}\) values plotted in Fig. 5, showed any trend with time. This indicates that the measurements used to derive both the calibration relationship and its subsequent application were not subject to long-term drifts on the timescales of the data collection in this study.

The proportion of the full dataset assigned to derivation of calibrated Aeroqual NO$_2$ values above was arbitrary. Table 1 presents statistics for the linear relationships in ‘test’ evaluations of \([\text{NO}_2\text{]}_{\text{Aeroq-C}}\) against measured \([\text{NO}_2\text{]}_{\text{ref}}\) values derived from the use of different portions of the time series of measurements as the ‘training’ dataset for generation of the linear calibration for \([\text{NO}_2\text{]}_{\text{Aeroq-C}}\) values. The R^2 values for the ‘test’ evaluations of

Fig. 3. Scatter plot of the deviations of hourly-average O$_3$ and NO$_2$ Aeroqual measurements from their respective reference measurements versus RH.

Fig. 4. Relationship between (\([\text{NO}_2\text{]}_{\text{Aeroq}} \text{–} \text{[NO}_2\text{]}_{\text{ref}}\) and \([\text{O}_3\text{]}_{\text{Aeroq}}\) measurements between 7 June and 24 July 2013 (849 pairs of hourly averages).
The parameters of the regressions have some variation, but the slopes are all within 12% of each other and the intercept never exceeds 2 \(\text{mg m}^{-3} \). As before, there were no long-term trends in the calibration performance (within the duration of this study) with splits between ‘training’ and ‘test’ data given in Table 1.

These results demonstrate that accurate linear calibrations of our \([\text{NO}_2]_{\text{Aeroq}}\) observations by reference monitors was feasible. The small amount of scatter remaining in the relationship between \([\text{NO}_2]_{\text{Aeroq}}\) and \([\text{NO}_2]_{\text{ref}}\) is assumed to reflect the measurement uncertainties in both the Aeroqual and reference analyser data. The very close agreement between the \(\text{O}_3\) sensor readings and the reference \(\text{O}_3\) instrument in this study suggests that any cross-interference of the \(\text{O}_3\) sensor to other ambient species is negligible for this sensor. The consistent functional relationship observed for adjustment of the \(\text{NO}_2\) sensor values by \(\text{O}_3\) sensor values likewise suggests that any other cross-interference on the \(\text{NO}_2\) sensor is much smaller than that of \(\text{O}_3\). Finally, it is noted that a potential operational disadvantage of these portable low-power instruments is the minimum ambient operating temperature of \(-5\ ^\circ\text{C}\) currently specified.

4. Conclusions

An Aeroqual Series 500 ENV \(\text{O}_3\) semiconductor oxide gas sensor yielded close agreement with hourly-averaged observations from a reference UV-absorbance \(\text{O}_3\) analyser in temperate ambient conditions. Although an Aeroqual \(\text{NO}_2\) electrochemical sensor appeared to suffer considerable co-sensitivity to \(\text{O}_3\) (to the point of the \(\text{NO}_2\) sensor evaluated in this study being inadequate as a measure of \(\text{NO}_2\) on its own), it was demonstrated that the \(\text{O}_3\) interference can be corrected for by co-deployment with an

![Fig. 5. Comparison of the calibrated Aeroqual \(\text{NO}_2\) values and measured \([\text{NO}_2]_{\text{AURN}}\) between 25 July and 15 August 2013. The \([\text{NO}_2]_{\text{Aeroq}}\) values were derived according to the OLS regression established using \([\text{NO}_2]_{\text{Aeroq}}\), \([\text{NO}_2]_{\text{ref}}\) and \([\text{O}_3]_{\text{Aeroq}}\) measured at the same site between 7 June and 24 July 2013.](image-url)
Aerqual O$_3$ sensor plus prior calibration alongside an NO$_2$ reference instrument. Individual sensor heads may vary in performance so further tests with different instruments at different locations are clearly required to confirm the findings. Overall, however, this study suggests that the Aerqual Series 500 NO$_2$ and O$_3$ monitors could be potentially useful ambient air monitoring instruments.

Acknowledgements

C. Lin was funded under NERC grant NE/I008063/1. J. Gillespie was funded by a University of Strathclyde PhD studentship. W. Duberstein and M.D. Schuder acknowledge funding contribution from the Thronson Foundation.

References

