Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

An experimental study of the effects of pulsating and steady internal fluid flow on an elastic tube subjected to external vibration

Zhang, Y.L. and Reese, J.M. and Gorman, D.G. (2003) An experimental study of the effects of pulsating and steady internal fluid flow on an elastic tube subjected to external vibration. Journal of Sound and Vibration, 266 (2). pp. 355-367. ISSN 0022-460X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The results of an experimental study on both pulsating and steady Newtonian fluid flow in an initially stretched rubber tube subjected to external vibration are reported. A circulating loop system was designed to maintain constant hydrostatic pressure throughout the tests so that the influence of external excitation on the fluid flow could be properly distinguished. The effects of fluid flow velocity and initial stretch rates on the dynamic response and damping of the tube conveying fluid were examined, and it was observed that damping ratios increase with increasing flow velocities, and generally decrease with increasing initial stretch rates for the tube conveying fluid. It was also noted that dynamic responses increase with increasing initial stretch rates, and decrease with increasing flow velocities. The effect of external vibration on fluid flow rates is small in a tube with a thickness-to-radius ratio (Dout−Din)/Din=0.617. Fluid pressures vary, in terms of frequency and amplitude, with external vibration as well as Womersley number.