Picture of automobile manufacturing plant

Driving innovations in manufacturing: Open Access research from DMEM

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Design, Manufacture & Engineering Management (DMEM).

Centred on the vision of 'Delivering Total Engineering', DMEM is a centre for excellence in the processes, systems and technologies needed to support and enable engineering from concept to remanufacture. From user-centred design to sustainable design, from manufacturing operations to remanufacturing, from advanced materials research to systems engineering.

Explore Open Access research by DMEM...

An experimental study of the effects of pulsating and steady internal fluid flow on an elastic tube subjected to external vibration

Zhang, Y.L. and Reese, J.M. and Gorman, D.G. (2003) An experimental study of the effects of pulsating and steady internal fluid flow on an elastic tube subjected to external vibration. Journal of Sound and Vibration, 266 (2). pp. 355-367. ISSN 0022-460X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The results of an experimental study on both pulsating and steady Newtonian fluid flow in an initially stretched rubber tube subjected to external vibration are reported. A circulating loop system was designed to maintain constant hydrostatic pressure throughout the tests so that the influence of external excitation on the fluid flow could be properly distinguished. The effects of fluid flow velocity and initial stretch rates on the dynamic response and damping of the tube conveying fluid were examined, and it was observed that damping ratios increase with increasing flow velocities, and generally decrease with increasing initial stretch rates for the tube conveying fluid. It was also noted that dynamic responses increase with increasing initial stretch rates, and decrease with increasing flow velocities. The effect of external vibration on fluid flow rates is small in a tube with a thickness-to-radius ratio (Dout−Din)/Din=0.617. Fluid pressures vary, in terms of frequency and amplitude, with external vibration as well as Womersley number.