Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Virtual inertia control of DFIG-based wind turbines for dynamic grid frequency support

Zhu, X and Wang, Yi and Xu, Lie and Zhang, X and Li, H (2011) Virtual inertia control of DFIG-based wind turbines for dynamic grid frequency support. In: IET Conference on Renewable Power Generation (RPG 2011), 2011-09-06 - 2011-09-08.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper investigates virtual inertia control of doubly fed induction generator (DFIG)-based wind turbines to provide dynamic frequency support in the event of abrupt power change. The model and control scheme of the DFIG is analysed. The relationships among the virtual inertia, the rotor speed and the network frequency variation are then investigated. The "hidden" kinetic energy that can be released to contribute to the grid inertia by means of shifting the operating point from the maximum power tracking curve to a virtual inertia control curve is investigated. The virtual inertia control strategy based on shifting power tracking curves of the DFIG is proposed and the calculation method for determining these virtual inertia control curves is presented. A three-machine system with 20 percent of wind penetration is used to validate the proposed control strategy. Simulation results show that by the proposed control strategy, DFIG based wind farms have the capability of providing dynamic frequency support to frequency deviation, and thus improving the dynamic frequency performance of the grid with high wind power penetration.