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Abstract

We use objective boundary conditions and self-consistent charge density functional-based

tight-binding to simulate at the atomistic-scale the formation of helices in narrow graphene

nanoribbons with armchair edges terminated with fluorine and hydrogen. We interpret the

microscopic data using an inextensible, unshearable elastic rod model, which considers both

bending and torsional strains. When fitted to the atomistic data, the simple rod model uses

closed-form solutions for a cubic equation to predict the strain energy and morphology at a

given twist angle, and the crossover point between pure torsion and a helix. Our modeling

and simulation bring key insights into the origin of the helical graphene morphologies stored

inside carbon nanotubes. They can be useful for designing chiral nanoribbons with tailored

properties.
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The recent synthesis of graphene nanoribbons (GNRs) encapsulated by carbon nanotubes (CNTs)1–3

opens new possibilities in controlling the electronic properties of this material. This is because

electronic properties of GNRs are sensitive not only to their width4 and edge chemistry5 but also

to the morphology, including twisted6–9 and helical.10 The GNR conformation inside CNT is thus

important but not fully understood. Both twisted and helical morphologies of GNRs with function-

alized edges have been reported inside CNTs.1–3 While the interaction of GNRs within the CNT
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Figure 1: Relaxed configurations of GNRs under torsion. Extended structures of (a) H-terminated,
showing aligned edge atoms, and (b) F-terminated, showing staggered edge atoms, GNRs under
pure torsion. The ground state of the H-GNR is free of torsion, while the repulsion of the staggered
edge atoms causes the F-GNR to have an intrinsic twist (more severe than shown here). For
the latter, the Mulliken charges on the edge F and C atoms are −0.19e and 0.26e, respectively.
Illustrations of helical boundary conditions for simulating GNRs (c) under pure torsion, and (d) in
a helical configuration. The simulation cells are shown as ball-and-stick structures, the images are
shown as wireframes.

cavity and the formation of twisted GNRs have been explored from different theoretical perspec-

tives,2,10–16 the helical equilibria of GNRs has been so far overlooked. It is unclear whether GNRs

with decorated edges can be stable helical structures presenting clear preference towards specific

helical orientations, or the GNR helicity is induced by the confinement in the CNT cavity.

In this Letter we study the torsional deformation of freestanding GNRs with hydrogen (H) and

fluorine (F) armchair edges. The atomic-scale simulations of the helix formation are uniquely en-

abled by the recent coupling of the objective boundary conditions17 with the self-consistent charge

density functional-based tight-binding18,19(SCC-DFTB). Boundary conditions for atomistic sim-

ulations17 based on the concept of objective structures21 have already been coupled22 with non-

orthogonal tight-binding in a manner that allows the application of an arbitrary twist. The method

has been used to model a number of tubular23,24 and graphene structures24–26 including twisted

GNRs.7–9,16,27 The recent inclusion of the SCC correction18 with a helical Ewald sum28 improves

the description of heteronuclear interactions by considering electron transfer, such as from the C to

the F edge atoms.20 This is important as edge chemistry alone can induce extended deformations

in GNRs.7,16 We also note that a large amount of simulations is required to understand the helix

formation. SCC-DFTB is appropriate for conducting this investigation as its offers both compu-
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tational efficiency and accuracy for geometries, even for biological systems which contain many

atomic species.32 While empirical constitutive potentials capable of treating C-F interactions exist,

including the recent parametrization33 of the ReaxFF force field, unfortunately they have not been

tested for the present system.

It is intuitive that an object with a large aspect ratio will form a helix when subjected to suffi-

cient torsion, and this is a well-known solution for a Kirchhoff rod under torsion.29–31 This helix

is a state of combined torsion and bending. The ability of objective boundary conditions to capture

these deformations has been already demonstrated in a number of studies, including pure twisting

of GNRs8,27 and pure bending of an infinite graphene sheet.26 Here, we apply objective boundary

conditions for the first time the formation of helices with non-zero curvature – a state of com-

bined morphologies with combined bending and torsion. Based on the microscopic data, we show

that the formation of the GNR helices can be successfully interpreted with the simple rod model.

While the Kirchhoff rod model is widely used in the DNA literature,30 its successful application

to narrow GNRs is a new development.

Our objective boundary conditions are able to describe both twisted and helical GNR structures

as

Xi,ζ = ζ T+Rζ Xi,0, i = 1, ...,nh, (1)

T≡


0

0

T

 , R≡


cosγ −sinγ 0

sinγ cosγ 0

0 0 1

 .

Here, Xi,0 are the coordinates of one of the nh atoms in the objective simulation cell, Xi,ζ are the

coordinates of the ζ -th helical image of this atom, where −∞ < ζ < ∞. T and γ are the translation

and angle comprising the helical operation. Figure 1 (c,d) shows how an infinite GNR under pure

torsion (with a straight centerline) or forming a helix (with a helical three dimensional centerline)

is built out of a unit cell containing nh = 16 atoms. The GNRs we consider have six C dimer lines

along their width.
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We carried out conjugate-gradient relaxations of GNRs where the only constraint is the twist

angle γ . T is allowed to vary freely during the relaxation. This is necessary in order to avoid

spurious axial strain, as GNRs exhibit shortening under torsion.8,9,16,27 In order to perform direct

comparisons between different configurations and with the inextensible rod model, we define the

twist rate θ = γ/T0 and the strain energy density W = E/T0, where E is the strain energy in a

single simulation cell. T0 is the value the translational component T of the helical operation at

the stress-free reference configuration. We carried out two sets of relaxations for each edge type:

one set that started with a configuration of pure torsion, and one that started as a helix “cut out”

from a CNT. All calculations used 20 uniformly distributed k-points. Relaxations were converged

until the maximum atomic force was less than 10−6 hartrees. At each relaxation step, the self-

consistent charges were considered converged when the maximum charge error was less than 10−8

elementary charges.

We observed that configurations starting with pure torsion always remained under pure torsion,

as this is an equilibrium state even when the helical state is energetically advantageous. The ini-

tially helical configurations only remain helical if they are energetically advantageous, otherwise

they relax to the pure torsion state. As seen in Figure 2 (a,b), the stress-free configuration for the

H-GNR occurs when at γ = 0 (Figure 1 (a)), and the computed cell length is T0 = 4.31 Å. For the

F-GNR, the stress-free configuration is one of pure torsion (Figure 1 (b)) namely where γ = 25.9◦.

The corresponding length is T0 = 4.28 Å, meaning the optimal twist rate is 0.105 Å−1.

The results of the simulations are summarized in Figure 2, with (a,b) showing the energetics,

and (c,d) showing the optimal value of T as a function of θ . The behavior may be summarized

as follows: initially, at low values of twist rate, the nanoribbon is centered on the helical axis

in a state of pure torsion (Figure 1, (c)). Eventually, the strain energy cost for increasing the

torsion becomes too high, and the additional twist rate is accommodated by the GNR assuming a

helical configuration that combines torsion and bending strains (Figure 1, (d)). Our simulations

show the crossover between pure and helical torsion occurs at twist rates of θ ≈ 0.063 Å−1 and

θ ≈ 0.137 Å−1 for the H-GNR and F-GNR, respectively. Note that, even at much higher twist
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rates, the F-GNR has a less severe reduction in T than the H-GNR. This means that the F-GNR

forms tighter helices, as T decreases with increasing helix radius r. Essentially, because the F-

GNR possesses intrinsic twist, it prefers a configuration of higher torsion and deviates less from

the pure torsion state.

Figure 2: Strain energy density W as a function of twist per undeformed arclength for (a) H-
GNR and (b) F-GNR under torsion. Circles indicate simulation results for pure torsion. Thin line
indicates fitting of pure torsion with quartic polynomials specified in Table 1. For θ where a helical
equilibrium distinct from pure torsion exists, triangles indicate results of helix simulations and the
thick line indicates predictions from the rod model. Arrows indicate crossover points between pure
torsion and helical configurations, from simulations and from the rod model. For both edge types,
the rod model predicts lower critical twist rate. Translation component T of the helical operation
as a function of θ for (c) H-GNR and (d) F-GNR. Symbols retain their meaning from (a) and (b).

We now attempt to interpret the helix formation using a simple inextensible, unshearable rod

model. The uniform helix is a known solution for such a rod with anisotropic bending.30 GNRs are,
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of course, highly anisotropic in bending, as bending within the plane of the ribbon is much more

difficult than out of the plane. Because the model rod is inextensible, the arclength of the helix

must be equal to T0. Thus, given a unit cell length of T and a twist angle γ , it is straightforward to

find the helix radius r. Defining p≡ λ/2π = T/γ , where λ is the pitch of the helix, we have

r = p
(

T 2
0

T 2 −1
)1/2

. (2)

The helix has constant torsion τ and curvature κ ,

τ =
p

(r2 + p2)
, κ =

r
(r2 + p2)

. (3)

For anisotropic rods, the material torsion is equal to the geometric torsion.30 Then, by assuming

that torsional strain and bending strain are superimposable, and as long as the strain energy as a

function of pure torsion and pure bending are known, one can minimize the strain energy of the

rod model over T at a given γ (and therefore θ ).

The strain energy density, Wτ , as a function of torsion is already known from the pure torsion

simulations, in which case τ = θ . Our previous microscopic considerations16 demonstrated that

this quantity is quartic in torsion,

Wτ =C4τ
4 +C3τ

3 +C2τ
2 +C1τ +C0. (4)

These coefficients were fitted to the pure torsion simulation results. The fitted curves are shown in

Figure 2, (a,b), and the coefficients are listed in Table 1. All energies are measured relative to the

minimum energy for the respective edge type. Because H-GNRs are achiral (no staggering of the

edge atoms), the strain energy is symmetric with respect to the twist sign change (i.e., γ →−γ).

Thus, there are no odd power terms for the H-GNR. The microscopic expressions for the quadratic

and quartic coefficients are given in Ref.16 Note that the quadratic coefficient depends strongly on

T . When this coefficient is positive, the intrinsic twist vanishes.
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Figure 3: Relaxed configurations of bent (a) H-GNR, showing aligned edge atoms, and (b) F-
GNR, showing “same-side” edge atoms. The ground state of the H-GNR is at zero curvature,
while the repulsion of the edge atoms causes the F-GNR to have an intrinsic curvature (more
severe than shown here). The simulation cells are shown as ball-and-stick structures, the images
are represented as wireframes. (c) Strain energy Wκ as a function of curvature κ for H-GNR under
pure bending. Circles indicate simulation results, line indicates fitting. (d) Wκ as a function of
curvature κ for F-GNR under pure bending, measured w.r.t. flat configuration free of bending or
torsion. Note the intrinsic curvature for this edge termination.
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Table 1: Polynomial coefficients of Wτ for each edge type.

C4 C3 C2 C1 C0
(eV Å3) (eV Å2) (eV Å) (eV) (eV/Å)

H-GNR 235.3 0 2.757 0 0
F-GNR -187.8 134.4 -10.38 -1.416 0.1303

The bending strain energy function is also required. To compute it, we simulate GNRs under

pure bending. This can be conveniently done using objective boundary conditions. In Eq. (1), T is

set to zero, γ is set to 2π/N, where N is an integer, and ζ = 0, . . . ,N−1. This simulates a closed

ring of constant radius, see Figure 3, (a). Graphene has been shown to behave in a linear elastic

manner up to fairly high curvatures,26 and we expect GNRs to do the same. Thus, we fit the strain

energy density as

Wκ =
1
2

Dκ
2, (5)

where the curvature κ ≡ γ/T0 and D is the bending stiffness. Figure 3, (c) shows bending of the

H-GNR fitted with D = 8.54 eV Å.

There are complications when attempting to apply this procedure to the F-GNR. The stress-

free F-GNR is twisted, and it is not possible to simulate a structure under both bending and twist,

except for cluster simulations restricted to discrete values of twist. Thus, it is necessary to simulate

bending of a twist-free F-GNR (Figure 3, (b)). However, under pure bending the F-GNR edges

adopt a “same-side” configuration and their repulsion causes an intrinsic curvature in the F-GNR

(Figure 3, (d)). We thus do not use the F-GNR bending data in the rod model. Inspection of the

relaxed configurations of helical F-GNRs indicates that the edge atoms remain in the “staggered"

configuration. This edge configuration is not biased towards either curvature direction, and thus

does not possess intrinsic curvature. We furthermore assume that the type of edge atoms do not

affect the bending stiffness significantly and use D = 8.54 eV Å for the F-GNR rod model as well.

The close agreement shown below between simulations and rod model justifies this assumption.
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We previously studied the bending of infinite graphene sheets,26 applying an approximate an-

alytical molecular orbital analysis to show that bending of graphene is dominated by torsional

misalignment of the π orbitals. Accompanying simulations using objective boundary conditions

predicted a bending stiffness of 1.49 eV. Using this information, we can roughly approximate the

bending stiffness of the GNRs. There are 12 carbon atoms per unit cell, each taking up 2.65 Å2 of

area. However, there are four edge atoms per unit cell that do not fully contribute to the torsional

misalignment energy. Thus, the stiffness corresponds to between 8 and 12 atoms worth of area

per unit cell. Dividing by T0, we obtain a range between 7.35 and 11.02 eV Å. This is consistent

with our fitted value of D = 8.54 eV Å. This value is slightly below the middle of the expected

range, indicating that the fact that the edge C atoms are bonded to freely-moving H edge atoms (as

opposed to being bonded to carbon atoms that are part of a rigid graphene network) reduces their

bending stiffness contribution by more than 50%.

Armed with the bending and torsional strain energy density functions, we can calculate the

optimal geometry and strain energy density of the rod model. Substituting Eq. (2) into ?? 3, then

substituting into Eq. (4), followed by computing the total strain energy density W = Wτ +Wκ

results in a fourth-order polynomial in T for each given θ

W =
C4θ 4T 4

T 4
0

+
C3θ 3T 3

T 3
0

+

(−D/2+C2)θ
2T 2

T 2
0

+
C1θT

T0
+C0 +

D
2

θ
2. (6)

Only minima located at T0 > T > 0 are physically significant. Such a minimum can be found by

differentiating the quartic W function and and solving the resulting cubic. For the structures and

ranges of θ studied here, if an extremum appeared in the range T0 > T > 0, it was always found to

be a minimum. The lowest θ at which such a minimum appears represents the crossover between

pure and helical torsion. The rod model predicts these crossovers occurring at θ = 0.057 Å−1

and θ = 0.132 Å−1 for the H-GNR and F-GNR, respectively, in good agreement with the values

predicted by simulations at θ ≈ 0.063 Å−1 and θ ≈ 0.137 Å−1. It thus predicts that the stress-free
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configuration must be one of pure torsion (or zero torsion for the H-GNR), as opposed to a helical

configuration.

Figure 2(a,b) shows the strain energy densities W predicted by the rod model in the helical

state, while (c,d) shows the corresponding values of T . Despite the simplicity of the model, the

agreement is reasonable, especially in the estimation of the crossover point. That the agreement

is better in the F-GNR is likely because the reference configuration is closer to the crossover

point – the increase in θ from the reference configuration to the crossover point is ≈ 0.03 Å−1

for the F-GNR as opposed to ≈ 0.06 Å−1 for the H-GNR. This results in less inaccuracy from

the inextensibility approximation. For example, the twist-shortening effect would decrease the

radius and increase the curvature and therefore the bending strain energy relative to the inextensible

model. This effect is lessened when the reference configuration is closer to the crossover.

Energetically, the rod model behaves in a very simple way – when in a helical state, Wτ , the

torsional component of the energy remains constant at the same value that occurs in pure torsion at

the crossover θ . All additional twist is absorbed into the bending strain energy. This observation

is important because it predicts that the stress-free state will never be helical – unless acted on

externally, a helical GNR can always release strain by decreasing its curvature to zero while keep-

ing the torsion constant until the crossover point is reached. Torsion will then be further reduced

until the optimal (finite or zero) twist is reached in a state of pure torsion, or a completely straight

state. These energetics are a result of the assumption that the bending component of the strain

energy is of the form in Eq. (5). The good agreement between the rod model and the simulation

results confirms the accuracy of this assumption and represents an insight into the behavior of F-

GNR edges. The torsion causes the edge F atoms to remain staggered, which precludes intrinsic

bending, which, in turn, precludes the formation of an equilibrium helix configuration.

Here, the formation of a helix is studied by applying torsion to the GNR, essentially in the

form of displacement boundary conditions. In experiment, helical GNRs have been observed con-

fined within a CNT.1,3 Because our analysis indicates that stress-free GNRs do not form helices

regardless of their edge decoration, the van der Waals adhesion of the GNR to the CNT and the
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corrugation of the graphene-graphene sliding energy exert sufficient additional force and torque to

keep the GNR in a helical configuration.

It should be noted that the analysis herein is peculiar to narrow GNRs. The rod model implicitly

contains the assumption of a non-deformable cross-section, which is satisfactory here. However,

for wider GNRs, cross-sectional warping is known to occur8 and to affect the properties of a helix

formed under torsion, requiring consideration of a deformable cross-section if elasticity modeling

is to be carried out.15 These models are full plate models including extensibility and out-of-plane

bending, and require numerical solutions of the elasticity equations. If an even wider GNR is

constrained to form a helix with a large radius, such as by being confined within a CNT or wrapped

around one, it can be reasonably modeled14 to be in a state of pure bending only. The reason why

this analysis holds for a wide GNR can be understood as follows. The torsional stiffness scales as

the square of the GNR width,16 while the bending stiffness scales linearly with width. Thus, very

wide GNRs are very stiff in torsion compared to bending. They would have their pure torsion-

helical crossovers at relatively low twist rates, keeping the torsional strain at a small value while

increasing the bending significantly as the twist rate increases.

In conclusion, using objective boundary conditions in combination with SCC-DFTB, we mod-

eled narrow (six dimers in width) GNRs with armchair edges terminated with F and H. F-GNRs

have pure intrinsic twist with F atoms in a staggered configuration but intrinsic bending when the F

atoms are on a same-side configuration. The H-GNRs have neither intrinsic twist nor bending. We

observed the transition between a state of pure torsion and a helical configuration, caused by the

relatively low energetic cost of taking on bending strain compared to increasing the torsional strain

above a certain twist rate. We demonstrate that if the pure bending and pure torsion behavior of

these GNRs is known, a simple rod model can predict the transition point, the energetics, and the

morphologies of the helical configurations. The rod model shows that the stress-free configuration

is always pure torsion or free of torsion, and external force is required to form a helix. In F-GNR,

when twist rate is increased beyond its equilibrium value, a helical configuration with partial bend-

ing strain develops. However, the F atoms remain staggered and intrinsic bending does not arise.
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Thus, neither the simulations nor the rod model predict the existence of a helical equilibrium. Nev-

ertheless, the edge chemistry plays an important role. Because of the propensity towards intrinsic

twist in the F-GNR, it transitions to a helical configuration at a larger twist rate than the H-GNR.

The F-GNR tends to form tighter (smaller radius) helices even at higher twist rates. Thus, GNRs

with intrinsic twist are more prone to helical packing into CNTs with narrow diameters.
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(27) Dontsova, E.; Dumitrică, T. Nanomechanics of Twisted Mono- and Few-layer Graphene

Nanoribbons. J. Phys. Chem. Lett. 2013, 4, 2010-2014.

(28) Nikiforov, I.; Hourahine, B.; Aradi, B.; Frauenheim, Th.; Dumitrică, T. Ewald Summation
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