Picture of automobile manufacturing plant

Driving innovations in manufacturing: Open Access research from DMEM

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Design, Manufacture & Engineering Management (DMEM).

Centred on the vision of 'Delivering Total Engineering', DMEM is a centre for excellence in the processes, systems and technologies needed to support and enable engineering from concept to remanufacture. From user-centred design to sustainable design, from manufacturing operations to remanufacturing, from advanced materials research to systems engineering.

Explore Open Access research by DMEM...

The use of effectiveness concepts in the calculations of thermal resistance of parallel plate heat sinks

Deans, J. and Neale, J.D. and Dempster, W.M. and Lee, C.K. (2006) The use of effectiveness concepts in the calculations of thermal resistance of parallel plate heat sinks. Heat Transfer Engineering, 27 (5). pp. 56-67. ISSN 0145-7632

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

With this study, a new and more adaptable approach to the thermal design of the large heat sinks used in power electronics is proposed. This method, supported by the results from an extensive experimental program, recognizes that (1) the heat sink fins and the airflow adjacent to them form a simple cross-flow heat exchanger, and (2) conventional NTU-effectiveness methods can be adapted for use in the thermal analysis of the heat sink. This adaptation requires the development and evaluation of an equivalent heat capacity to describe the energy conducted along the fin. This method was initially used to evaluate the convective heat transfer coefficients between the fin and the cooling air. In this geometry, the developing airflow conditions make the prediction of representative values difficult. The correlation found to describe the test results was then used in an inverted analysis to predict and compare the experimental values for the heat sinks thermal resistance. The method is finally used in a design example where the fin spacing is optimized for a particular test duty. It is concluded that this new approach will make the design of large heat sinks more robust and reliable.