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33 Abstract

35 Sessile droplets of an ionic liquid with contact angles dio$£F were subjected to an

37 electric fieldE = V/w inside a capacitor with plate separatioand potential difference.

39 For small field induced deformations of the droplet shapethihage in maximum droplet
height,Ah = h(E) —h(0), was found to be virtually independent of the plate sépara
provided thatv > 3h(0). In this regime a scaling law obtaifsls o E’r?, wherer is the
constant droplet radius, in agreement with the asymptotic pmedidBasaran and Scriveh (

Coll. Int. Sci. 140, 10, 1990).
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1. Introduction

The study of the stability of charged water droplets wasrigmtrted by Lord Rayleigh [1].
This seminal paper in the established the field of mbgtrodynamics, which continues to
be an area of intense interest and investigation includingniderstanding the behaviour of
raindrops in rainclouds as well as for diverse technologicdicagipns based on
electrospraying and in printing and coating processes [2#]35]. When a conducting
liquid drop is subjected to an electric field it tends to eda@long the direction of the
electric field, and this was reported in relation to tladitity of water droplets in an electric
field [6]. Now consider the case where the liquid formsxasyammetric sessile drop
supported on the inside face of a parallel plate capatierpresence of the electric field
distorts the shape of droplet away from the equilibrium sphlezap profile (assuming the
droplet is smaller than the capillary length) and the droplet sises towards the opposite
plate. The ability to control the shape via an exterragiglied electric field provided by this
geometry has been exploited for applications including suréaxseon measurement [7], an
optical display mode [8], and optimising the optical propertiggobfmer microlenses [9]
[10]. Further potential applications of this geometry are westkin references [11] and [12].
Previous quantitative experimental and theoretical work odigtertions produced in
conducting liquids in this geometry includes on soap bubbles [13] [1}M&Ter droplets
[16], and water droplets immersed in dielectric oil [17].Ha turrent work we consider
small distortions, in which the voltage-induced height increakess than 5% of the initial

height, for droplets with contact angles close t& 90

2. Materialsand Methods

Figures 1(a) and 1(b) show the experimental geometry. flasesoplet of liquid of
maximum height(0) and radius rests on the lower plate inside a parallel plate c&maci
with variable gapv between the electrodes. The electrodes were formedaroontinuous

layer of transparent conductor, indium tin oxide (100 Ohm/squamm2&ickness,
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Praezisions Glas and Optik GmbH, Iserlohn, Germany) on bordsititass slides. The

lower plate was coated with a commercial hydrophobic coatirgn@ers International Ltd,
Derbys., UK) which gave contact angles close tbwth sessile droplets of the conducting
ionic liquid butyl methyl imidazolium tetrafluoroborate. Applyingheir a D.C. voltage,

V =Vqy.c, Or an A.C. voltageV =V, s, between the capacitor plates deformed the shape of a
sessile drop of the liquid within the capacitor and incredseditaximum height by an
amountAh = h(E) —h(0), whereE = V/w. Figures 1(c) and 1(d) show images of a sessile
droplet for whichh(0) = 1.20 mm angv = 2.55 mm with both capacitor plates grounded and
with an D.C. voltage of 2300 V applied across the capacitweprespectively. The ratio

w/h(0) for figure 1 is much smaller than the values actusld in the study.

The ionic liquid butyl methyl imidazolium tetrafluoroborate iseagellent conductor and has
a low vapour pressure so shows negligible evaporation during thereapts [18] [19] [20].
The surface tension of the liquid was found from pendant drop measuise[21] (Drop
shape analysis, A. Kru€yptronic GmbH, Hamburg, Germany) to be 40.9 £ 0.5 mN/m and
taking a literature value of the density of 1120 kbj#2] this gives a capillary length of

1.9 mm. Since this capillary length is greater thardibmeters of any of the drops used in
the study, gravity can be neglected and the sessile drémieta spherical cap in the
absence of the electric field. In the study A.C. volsa@pplied using a Trek model 609E-6
4 kV amplifier) at 1 kHz were used to avoid continuous chargiregestf The D.C.
conductivity of dry butyl methyl imidazolium tetrafluoroborate igoded to be 0.295 S/m at
303.2 K [23], and this increases significantly when the natsrhydrated [24], which is
expected as the droplet is used here in an ambient atmosphestimated charge density
of the liquid, at 18 to 1" m*[25] is sufficient to screen and exclude electric fieldsynan
orders of magnitude higher than used in the experiment from tle iofsthe liquid droplet.
The charge is also sufficiently mobile; the conductivity ofdheliquid increases with
frequency and a relaxation which has been observed inrferotions is in the range 4.0

to 10 Hz [25] (at 280 K) is well above the value of 1 kHz usedtr experiments at 293 K.
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The height change valuesh = h(E) —h(0), in response to D.C. and A.C. voltages were
found to agree to within £1% over the full range of voltagd, gap and drop heights used in
the studies. Using transparent electrodes enabled the diopviewed both from above and
from the side during the experiments. Accurate values for thé baight changes in the
range 1 to 40 um were obtained using a 20x microscope objedtigk imaged an area at
the top of the droplets. The recorded images were contrast eadh#mesholded, and the
position of the top of the droplet was accurately obtained @smgadratic fit to the shape

near to the apex.

3. Results and discussion

Figure 2 shows data for the voltage induced change in maxoinopiet heightAh = h(E) —
h(0), plotted against the square of the electric fi€ldvhereE = V. s/w. Data are shown for
a droplet with a zero-field height bf0) = 0.71 mm and contact angle 88tdr 4 different

cell gapsw: 1.15, 1.67, 2.33 and 2.90 mm. Data for the largesgegl, 2.33 and 2.90 mm,
fall on the same straight line. Wher= 1.67 mm there is still a linear relationship between
Ah andE?, but the gradient has increased. When the cell gaglised again to

w = 1.15 mm the gradient is further increased and the planbes super linear for the higher
electric fields shown. In order to elucidate the cell dapendence the deformation of a
droplet of zero-field height(0) = 0.74 mm was measured for different valuew @iith the
voltage adjusted at each gap to maintain a constant \@ltieefelectric field of

E =V, ms/W = (6.6+ 0.2)x 10° V m™. The voltage induced change in droplet height,is
plotted as a function af/h(0) in the inset graph in figure 2. This shows that theatian in

Ah with plate separatiow is small and lies within the experimental accuracy ofrggthe

electric field wherw > 3n(0).

Figure 3 showah plotted againsE? for a number of droplets with zero-field heights ranging
from h(0) = 0.476 mm (indicated by cross symbols) up(@ = 0.985 mm (indicated by

open diamond symbols). For each of the droplets the cell gafixedsat



O©CO~NOOOTA~AWNPE

w = 2.67+ 0.05 mm, so that the conditien> 3h(0) was maintained across the whole range
of droplet sizes except for the largest droplet for wiwch2.h(0). Droplets were selected
for study for which the contact angle was in a narrow rang4.6f around the average value
of 91.8. For each droplet height a linear fit is shown to tha.dBlhe gradients from these fits
are plotted against the square of the droplet radiushe inset graph in figure 4, which also
shows a linear dependence. In figure 4 the data from fi§jéwethe voltage induced change
in maximum droplet heightyh = h(E) —h(0), is plotted againsE&f)?, which is the same as
r’V.ms2W. All the data for the different droplet sizes falls clasa single straight line,

including for the largest droplet used in the study.

The observed scaling relationshih ~ r?V, m sw? can be intuitively understood as arising
from the applied Maxwell stress producing a change in the droyreature associated with
a balancing increase in the Laplace pressure. The Masisedis Yz, E 2, [26] is given under
the assumptions th&tis the normal electric field in air at the apex of theptiet, and that the
permittivity of a conducting droplet is infinite and tangentlat#ic fields at its surface are
zero. The additional Laplace pressure at the droplet apex duéntcreaseh in height can
be approximated by [21)k (—VLV %) ~2YLv %, wherey; is the surface tension of the
liquid. Equating these two contributions accounts for the observedgedth a predicted
coefficient given by.25y;,,. A quantitative asymptotic analysis of this systeneported by
Basaran and Scriven in reference [15] for an initially isphrerical droplet on the inside of a
capacitor plate for small values of the electrical Bond nupiaer (s,7V?2)/(2y,,w?) < 1
(here including an extra factor of “2” in the denominator as useeference [15]). They
predicted a scaling relationship of the form shown in equatiamtiia = 9/8 in the case of a
fixed 9C° contact angle, and wittn = 3/8 in the case of a fixed contact line (i.e. a fixed
radius).

g,T2V?
(equation 1) Ah = (r — h(0)) + a =
Yiv

w2
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The gradient of figure 4 givea€Ah)/(r2V?2) = (1.03+ 0.05)x 10*°m V2, compared to the
theoretical gradient 0.8410° m V2 for a fixed contact line it = 0.375. Along with our
measured value for the surface tension this gives an expeainvalue for the coefficient in
equation 1 ofi = 0.47+ 0.02. The experimental coefficient lies between thetheoretical
values predicted for a fixed 9@ontact angleo( = 1.125) and for a fixed contact line

(a = 0.375), being closer to, but 25% higher than the fixed contactdioe. This is
consistent with our observations of the top view of the droplaiwing that, for the small
deformations considered in the study, Ak/h(0) < 5%, the contact lines remained circular

and a change in the value of radiumuld not be detected during the application of voltages.

4. Summary

For a plate separation that satisfies 2.71(0) we find very good agreement with a scaling
relationship of the formh o r2V2/w? (c.f. equation 1), as predicted from the asymptotic
analysis for a contact angle of°d@ reference [15]. Our experimental value of the coefficien
of proportionality falls between the values predicted irfitted contact line and in the fixed
contact angle limits. There are two physical phenomena thatoataken into account in the
theory and the analysis. Firstly, small changes in suttatson have been reported for
liquids subiject to large electric fields applied in rethéxperimental geometries. For
example, in reference [27] it was found that the eleatld Historted profiles of droplets of
water, propylene carbonate and formamide fit to numericallyulated theoretical profiles if
their surface tensions increased by 6.6%, 2.1% and 3.1%¢teshewhen subject to an
electric field of 5.6x 10° V/m provided by a voltage of 7 kV applied across a gap of 12.5m
The highest electric fields used in our study ranged fromx &3 V/m to 7.7x 10° V/m,
somewhat higher than the value in the study reported in [28pn8&/, we report a liquid

and surface treatment combination which provides contact arajless which are
reproducibly close to 90As stated above, the contact angles of different dropéets in our
scaling investigation were all within £2.6f the average value of 92.8\ full numerical

analysis of the system with a fixed contact line indicdiasthe coefficientx would be
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increased by 10% for an increase in the contact angle df.f8tabove 90. An

investigation of this strong contact angle dependence will beuthject of a future study.
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Figure captions

Figure 1

Figure 2

Figure 3

Figure 4

(a) and (b) show the experimental geometry. gilsadrop with a contact angle
close to 90 rests on the lower plate inside a parallel plate capastitacture. A
voltage applied across the capacitor plates deforms thenditich increases in
height, (b). Images of a sessile droplet of the ionic liuityl methyl
imidazolium tetrafluoroborate for whidi{0) = 1.20 mm anev = 2.55 mm are
shown (c) with both capacitor plates grounded and (d) with a\l@Gge of

2300 V applied across the capacitor plates.

The voltage induced change in height of the évog, h(E) — h(0), plotted

against the square of the electric fie#, Data are shown for a droplet of zero-
field height ofh(0) = 0.71 mm and contact angle 88fdr 4 different cell gapw.
Inset: deformatioh plotted againsiv/h(0) for a droplet of zero-field height

h(0) = 0.74 mm and contact angle 89sRibject to a constant electric field of (6.6

+0.2)x10° V m™.

Change in height of the dré = h(E) —h(0), plotted as a function of the square
of the electric fieldE? for a range of zero-field droplet heights between
h(0) = 0.476 mm (indicated by cross symbols) k() = 0.985 mm (indicated by

open diamond symbols). The cell gap was fixed in the rang@.67 + 0.05 mm.

Inset: The linear relationship between the gnésiiefAh versusE?, from figure
3, is plotted against the square of the radius of the drofl&he uncertainties on
the gradient values, found using linear regression, rangedfddfo to £1.2%
Main panel: When thAh data from figure 3 for different zero-field droplet

heights is re-plotted as a functionEf? it collapses onto a single straight line.
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