
Analysis of the Free Vibration of a Coupled Plate/Fluid Interacting 

System and Interpretation using Sub-system Modal Energy 

 

Daniel G Gorman
1
   

Department of Mechanical Engineering, James Weir Building, 

University of Strathclyde, Glasgow G1 1XJ 

 

Jaromír Horáček 

Institute of Thermomechanics, Academy of Sciences of the Czech Republic, 
Dolej�kova 5,182 00 Prague 8, Czech Republic 

 

 
ABSTRACT 

This paper describes a method for describing and quantifying the vibratory behaviour 
of interacting structural/fluid systems based upon reference to the relative energy 
associated with each of the sub-systems. The particular case selected is that of a 
circular plate in interaction with a cylindrical fluid cavity. A theoretical analysis is 
performed, based upon the Euler Bernoulli and Helmhotz equations combined through 
a Galerkin technique, from which the natural frequencies and associated mode 
functions of the interacting system are calculated. The convergence of the analysis is 
investigated and the opportunity is taken to investigate the sensitivity of the coupled 
natural frequencies to different assumed mode shapes of the plate in vacuo. 
Subsequently the coupled mode functions are used to describe details of the energy 
associated with the plate and the fluid. It is found that presentation of these relative 
energies renders a satisfactory insight into the vibration behaviour of the coupled 
system. 
 
Keywords    Vibrations, structural/fluid interaction, structural/acoustic. 
 
1. INTRODUCTION 

The influence of fluid interaction upon the higher frequency vibration of a light 

flexible structure has been a subject of growing interest, particularly due to the 

increased deployment of thin-walled liquid/gas containers such as pipes and storage 

vessels.  In the literature this work comes under two main headings; 

structural/acoustic vibration interaction and structural/fluid vibration interaction. In 

the former the research is confined to the interaction between a light structure and 

sound pressure waves in an acoustic cavity which the structure is enclosing. The 

general analysis of acoustic/structural vibration interaction problems is presented in 

[1,2], where infinite series solutions for the acoustic pressure and the displacement of 
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the structure are derived from a fundamental solution of the uncoupled problems, viz.: 

vibration of the structure in vacuo, and acoustic resonance in a closed cavity with 

undeformable walls. These basic models were extended and applied to problems 

involving rectangular plates backed by rectangular cavities [3,4,5,6]. A study has been 

performed on the case of a circular membrane vibrating in contact with a gas 

contained in both a closed and open cylindrical cavity [7]. With respect to the case of 

vibro-acoustic effects involving a circular plate, Lee and Singh [8] analysed the 

characteristics of the acoustic radiation emitted from a vibrating circular plate in free 

space and Gorman et al considered the case of a circular disc covering a cylindrical 

acoustic cavity in the absence of [9] and presence [10] of inplane membrane stress in 

which they developed coupled system equations for iterating the coupled natural 

frequencies only.  With respect to structural/fluid vibration interaction in storage 

containers, Bauer and Chiba [11] considered the case of a circular plate backed by a 

cylindrical cavity containing fluid assumed to be viscous and incompressible and 

Amabili considered effect of incompressible liquid depth and contact upon the free 

vibration of circular and annular plates [12,13] . Recently Gorman et al [14] studied 

the case of a circular plate in interaction with a liquid/gas cavity which included the 

dimension of the interaction between the liquid and gas filled cavities. 

 In studies such as this, since in all cases one is dealing with some degree of 

structural/fluid vibration interaction, it would be erroneous to describe any mode of 

vibration as either purely a structural mode or an acoustic (fluid) mode. Rather the 

natural modes associated with such interacting systems are interacting modes of the 

structure and the fluid and the question is posed; for any interacting mode of 

vibration, what is it structurally or fluid dominant and to what relative degree? 

Accordingly, the main aim of this paper is to develop and describe a method, based 

upon sub-system modal energy,  which will quantifying and describing the natural 

modes of vibration of the plate/fluid interacting system with respect to the relative 

structural or fluid dominance . Prior to this, the analysis will be described and the 

convergence of the method for predicting natural frequencies and associated mode 

shapes investigated. 
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2. BASIC ANALYSIS OF THE VIBRATION OF THE COUPLED SYSTEM. 

The equation of motion, describing the free small axisymmetric lateral vibration,  = 
(r, t), of a circular disc in interaction with the acoustic cavity, as shown in Figure 1, 

is 
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Figure 1 � Schematic diagram 
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E is Young�s modulus, μ is Poisson ratio and ρd is the plate density; a and h are the 
radius and thickness of the plate, respectively; L is the length of the cylindrical cavity 
and p is the acoustic pressure inside.  
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where )(rsψ  is the natural mode shape of the disc in vacuo and χ s is a constant for 

that mode, generally referred to as the mode shape coefficient for the mode consisting 
s nodal circles. In this particular case, for a stressed disc clamped at the periphery, the 
mode shapes, )r(sψ , are according to [15]: 
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Where I0, I1 and J0, J1 are the Bessel functions (order zero and one). 
For a particular value of s, the natural frequency of free undamped vibration, ,sω  is 

then: 
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  Now for a particular mode of vibration for the disc in vacuo: 
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Therefore combination of equations (1), (2) and (6) gives: 
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The form of the acoustic pressure, p, acting on the disc will now be established by 

reference to the acoustic cavity. Consider the acoustic cavity shown in Figure 1, 

whose velocity potential, φ = φ(x , r , t) is described by 
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where 2222 or αλλα −=−= kk  and 0
~ =B  since )r(Q  must be finite when 

0→r .  At 1=r  
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Therefore the condition (11) has roots αq (q = 1, 2, 3 etc.), which satisfy the equation 
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At 1=x , the axial component of the velocity of the gas and the lateral velocity of the 
plate must be equal, i.e, 
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Now using the orthogonal properties of the eigenfunction, ( )rJr qα0 , by multiplying 

both sides of equation (13) by ( )rJr qα0  and integrating between 1≤≤ r0  

according to reference [16] gives 
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the value of which can be obtained through standard numerical integration. 
Now the pressure, p, at the surface of the plate is given by: 
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where ρ  is the fluid density. 

Therefore combining equations (12) and (14) renders: 
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Substituting equation (16) into equation (7) gives: 
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Multiplying both sides by ( )rJr qα0  and integrating between 10 ≤≤ r  renders: 

 ( ) 0
tan

1
)()(

22

1

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−∑

∞

=
ωω γγ

ρωωχ
qq

sqss

s

K ,                   (17) 

 

where 
plateofmass

gasofmass
==

h

L

d

f

ρ
ρ

ρ . 

 

Now, since 
4

42

ha

D

d

ss ρ
ξω =  

 
a quantity ξ  instead of ω can be introduced defined by the relation: 
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Equation (19) can be represented in matrix form as 
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Hence values of ξ2 can be obtained (iterated upon) which renders the determinant of 
matrix (20) equal to zero. Consequently for each of these values (roots) of ξ2 the 
corresponding values of mode shape coefficients χ 1, χ 2, ��� χ n.,can be 
obtained. The determinant of this matrix equation is obtained by performing the LU 
decomposition [17], whereupon the value of the determinant is the product of the 
diagonal terms. Subsequently these root values of ξ2 which render the determinant 
zero are substituted back into equation (20) to obtain the corresponding values of the 
mode shape coefficients, χ s,  (normalised to χ 1 in the first instance and then to the 
largest value, ) which describe which structural modes are present and dominate. 
 
 
The parameters which will give rise to conditions of strong structural/fluid vibration 
interaction will now be developed and postulated.  Figure 2 shows a plot of a natural 
frequency, sω , of the plate in vacuo and a natural frequency, mω , of the acoustic 

cavity if the top plate was rigid.  Both of these natural frequencies are plotted to a 
base of the controlling parameters, L; the depth of the cavity.  Now, for any value of s, 
the natural frequency of the plate in vacuo is given by equation (5) and this value is 
independent of the depth L.  A natural frequency of the solid bounded fluid cavity is 
obtained by now imposing the condition that 
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Note, in the special case(s) when m=0, this would imply only radial fluid modes with 
the fluid having zero axial component of velocity, this having no interaction with the 
axial vibration of the plate.  Therefore, for , 1≥m
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This is demonstrated in Figure 2.  As L increases all values of mω  decrease and will, 

for appropriate values of L = Lc correspond to values of sω  of the plate in vacuo.  In 

such circumstances there is strong structural/fluid vibration interaction characterised 
by a region of �veering� whence at L = Lc the strongly interacting system will exhibit 
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two natural frequencies close to each other, in which one will be structural/acoustic 
(st/ac) and the other acoustic/structural (ac/st). 
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For the purpose of this study only the case where q = 1, i.e. Įq = 0 (zero radial 
component of fluid velocity) will be studied, whence, for strong interaction, renders 
the condition. 
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Prior to examining the characteristics of the strongly coupled vibration modes 
associated with various combinations of s and m, the convergence of the analysis 
presented, and the sensitivity to small changes (errors) in the values of mode shapes 
associated with the free vibration of the plate in vacuo will be investigated. 
 
For this exercise, and all subsequent results, the following parameters will be adopted;  

c = 343 m/s (air), ȡd = 7800 kg/m3, ȝ = 0.3, E = 210 GN/m2 and ⎟
⎠
⎞

⎜
⎝
⎛

h

a
= 100. 

 

Convergence 

 

For the convergence analysis consider a plate clamped around its perimeter.  
Furthermore the dimensions, cL  are selected, in accordance with equation (24), such 

that strong coupling exists between the first natural frequency of the plate in vacuo 
(s=1) and the first natural frequency (m=1) of the completely bounded cavity. For 
such a case the value of cL  is 6.7177. Accordingly, Table 1 lists the values of ȟ2 and 

c

L

π
ωβ =  obtained for n = 2, 4, 6 and 8. In an attempt to identify particular coupled 

modes of vibration, Table 1 also lists the corresponding vector of mode shape 
coefficients, s.  Furthermore the values of ȟ2 can be compared with those for the 
plate in vacuo; ȟ1

2
 = 10.216, ȟ2

2 = 39.771 and ȟ3
2 = 89.104 and the values of 

q

β  can be 

compared to values of mm =β . 

 
In this study, since in all cases we are dealing with some degree of structural/fluid 
vibration interaction, it would be erroneous to describe any mode of vibration as 
either purely a structural mode or an acoustic (fluid) mode. Rather reference will be 
made to the modes as either structural/acoustic (st/ac), to denote modes which are 
predominantly structural with acoustic interference, and likewise acoustic/structural 
(ac/st) to denote modes which are predominantly acoustic but with structural 
interference. 
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n = 2 n = 4 n = 6 n = 8 Comments 
9.6708, 0.9467, 
{1, 1.353x10-2} 
 

9.6809, 0.9476, 
{1, 5.4x10-3--}  

9.6815, 0.9477, 
{1, 5.2x10-3--} 
 

9.6817, 0.9477, 
{1, 5.2x10-3--} 
 

1st st/ac? 
(s=1, q=1, m=1), 
strong coupling 
with 1st ac/st 

10.763, 1.0535, 
{1, -1.57x10-2} 
 

10.754, 1.0526, 
{1, -6.3x10-3--} 
 

10.753, 1.0526, 
{1, -6x10-3--} 
 

10.753, 1.0526, 
{1, -6x10-3,--} 
 

1st ac/st ? 
(s=1, q=1, m=1), 
strong coupling 
with 1st st/ac 

20.462, 2.003, 
{1, -0.524} 
[0.05,  99.95] 

20.466, 2.0033, 
{1, -0.214,--} 
 

20.466, 2.0033, 
{1, -0.207,--} 
 

20.466, 2.0033, 
{1, -0.207,--} 
 

2nd ac/st? 
(q=1,m = 2), 
 

30.646, 2.999, 
{-0.39, 1} 
[0,  100] 

30.659, 3.0011, 
{-0.967, 1,--} 
 

30.659, 3.0011, 
{1, -1,---} 
 

30.659, 3.0011, 
{1, -1,---} 
 

3rd ac/st ? 
(q=1, m = 3) 

39.548, 3.8712, 
{-3.7x10-3, 1} 
 

39.648, 3.8811, 
{-4x10-3, 1,--} 
 

39.651, 3.8813, 
{-4x10-3, 1,--} 
 

39.651, 3.8813, 
{-4x10-3, 1,--} 
 

2nd st/ac ? 
(s=2, q=1, m=4) 

41.064, 4.02, 
{3.7x10-2 ,1} 
 

40.957, 4.0092, 
{8.13x10-2, 1,--} 
 

40.955, 4.009, 
{8.38x10-2, 1,--} 
 

40.954, 4.0089, 
{8.42x10-2, 1,-- } 
 

4th ac/st? 
(q = 1, m = 4) 

 
Table 1    Convergence ȟ2, ȕ, { χs }T 
 
From Table 1, it is seen that convergence is extremely fast with respect to n; requiring 
only n = 6 for a fully converged result for these lower modes. Accordingly, forthwith 
n = 6 will be used throughout. 
 
Sensitivity to small changes in eigenvectors 

 
With reference to equation (17), it can be seen that two main influencing factors are 
the natural frequencies of the plate in vacuo ( sω ) and the associated mode shapes 

contained in Kqs (equation (15)).  For simple structural elements such as that 
considered in this study accurate descriptions of these modal parameters can easily be 
obtained from standard exact analysis.  However in more complex structures often the 
natural frequencies ( sω ) are obtained from energy/numerical techniques, e.g. 

Rayleigh-Ritz, finite element etc.  However with modern high performance 
computers, the accuracy of the natural frequencies can correspond exceedingly close 
to the exact values.  However in the case of the associated mode shapes, )r(sψ , 

accurate equations describing these are difficult to obtain using energy methods 
(where an approximate form of mode shape is assumed) and finite element procedures 
(where mode shapes are produced in the form of discrete numbers produced from a 
numerical treatise of the problem).  Therefore, the effect of changes in mode shape 
upon the sensitivity of the results produced by the coupled system equation (20) will 
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be investigated.  For this, once again consider the case of a plate clamped around the 
boundaries and, as before, the dimensions are set such that there is strong coupling 
between the first natural frequency of the plate in vacuo and the first acoustic natural 
frequency of the solid bounded cavity (s=1, m=1). 
Table 2 shows results corresponding to the first six natural modes of the coupled 
system. In this case, however, the same natural frequencies of the clamped plate in 
vacuo was used, but, instead of using the corresponding plate natural mode shape 
function for a clamped plate that corresponding to a simply supported plate in the 

formulation of  Kqs was used. This represents a crude form of approximation of the 
actual and correct mode shape of a clamped plate. Accordingly, Table 2 list the details 
of these six natural modes computed using these erroneous normal mode functions.  
For direct comparison, Table 2 lists the corresponding (correct) values in which both 
the natural frequencies and associated mode shapes for a plate clamped around the 
periphery are used in equation (20-21) (values contained in square, [   ], brackets). 
The contents of Table 2 indicate a remarkable insensitivity of values and vectors 
describing the natural modes of the coupled system to errors in the natural mode 
functions of the plate in vacuo. In other words, it would appear that the determinant of 
the system matrix equation (20-21) is very insensitive to relatively significant changes 
in the values of Kqs. This is an interesting observation as it indicates that the method 
can be used with a good degree of confidence if one can only present equation (20-21) 
with approximate mode shapes, which is often the case in practice. 
 
ȟ2, ȕ  
9.6011, 0.9398 
[9.6815, 0.9477 ] 

{ χs }T     =   { 1, ~0, ~0, ---------}      [{ 1, ~0, ~0, ---------}]      

 
10.843, 1.0613 
[10.753, 1.0526] 

{ χs }T     =   {1, ~0, ~0, -------  }        [{1, ~0, ~0, -------  }] 

 
20.048, 2.0047 
[20.466, 2.0033] 

{ χs }T     =   { 1, -0.185, ~0, --- }        [{ 1, -0.207, ~0, --- }] 

 
30.067, 3.0021 
[30.659, 3.0011] 

{ χs }T     =   { 1, -0.9, ~0----- }         [{ 1, -1, ~0, ~0, -- }]  

 
39.654, 3.8816 
[39.651, 3.8813] 

{ χs }T     =   {~0, 1, ~0, ~0, -- }          [{~0, 1, ~0, ~0, -- }] 

 
40.094, 4.0076 
[40.955, 4.0089] 

{ χs }T     =   {~0, 1, ~0,------  }           [{~0, 1, ~0,------  }]       

 
 
 
 
Table 2      Comparison of results (ȟ2, { χs }

T) of using  two different mode shapes in 
formulation of Kqs..  
 
The results presented in Table 2 demonstrate that the equation (20-21) renders roots 
which are relatively insensitive to the form of the mode shape used to describe the 
vibration of the plate in vacuo.  
 
3.   SUB-SYSTEM MODAL ENERGY. 

 In Table 1 reference was made to st/ac and ac/st mode to indicate whether the mode 
of vibration was predominantly a structural or acoustic respectively. The modes are 
labelled according to; 
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1. the proximity of ȟ2  to ȟ2

s
  

2. the proximity of β  to β m, and 

 { χ3. the form of the vector of mode shape coefficients s }. 

tisfactory means of trying to describe these 
 

e values of ȟ2 (20.466 and 30.659 respectively) are well removed from ȟ2
1

 (10.216) 

 
In general this is an inaccurate and unsa
couple modes. For example, if one considers the 3rd and 4th row of Table 1 for n = 6,
th
and ȟ2

2
 (39.771) and the corresponding values of β  are exceedingly close to 2 and 3. 

This indicates a strong ac/st mode. However, the issue is clouded as it can be seen that 
for each of those two modes, the mode shape of the plate will be a combination of the 
first and second natural mode shapes of the plate in vacuo.  
 
Accordingly, in an attempt to describe such modes in a clearer and more quantifiable 
manner, attention will now be focussed on the kinetic energy associated with coupled 
tructural/fluid vibration interacting systems. s

 
For the plate the kinetic energy, KEp, is calculated from; 
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and both rqV  and  are now obtained from equations (12) and (14). Also, the 

ercen  and  are expressed as, 
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Also a set of eigenvectors for the plate and fluid is 
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Consequently, using the above relative percentage energies, the characteristics of a 
lar clamped disc in strong interaction with an acoustic cavity as described are 

investigated. Consider the case where 
circu

cL  is 6.7177 which, as before, results in a 

condition of strong coupling between the first mode of the plate in vacuo (s=1), and 
the first (m=1) axial mode of the fluid cavity if the plate is assumed rigid.  In all cases 

the ratio of 
h

a
 = 100 and  we will only consider roots of the system matrix equation 

(20-21), ȟ2, up to those close to that corresponding to the third of the plate in vacuo, 
2
3ξ  , equal to 89.104. Accordingly Table 3 list the frequency roots, ȟ2, together with 

the associated vectors; { χs }T , {%KEps}, {%KE
x
fq} and {%KE

r
fq }.  

 
 

 
 

2, ȕ  Mode Description 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ȟ
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χ9.6815, 0.9477 { s }T     =   { 1, ~0, ~0, ---------}    

{%KEps}   =   { 47.88, ~0, ~0, --- } 
KE

x
fq}   =  { 52.03, ~0, ~0, --- } 

%KE
r  }  =  {~0, ~0, -----------  } 

Strongly coupled st/ac or ac/st 
mode at s = 1, q = 1, m ~ 1. 

{%
{ fq

10.753, 1.0526 { χs }T     =   {1, ~0, ~0, -------  }     

{%KE s}   =   { 50.99, ~0, ~0, -- } p

{%KE
x
fq}   =  { 48.91, ~0,  ~0,-- } 

{%KE
r
fq }  =  {~0, ~0, ~0, ------  } 

Coupled ac/st mode at s = 1, q =
m ~ 1. 

 1, 

20.466, 2.0033 { χs }T     =   { 1, -0.207, ~0, --- }     

{%KE s}   =   {0.5, ~0, ~0, ------ } p

{%KE
x
fq}   =  { 99.5, ~0, ~0, -- } 

{%KE
r
fq }  =  {~0, ~0, ~0, ------ } 

Weakly coupled ac/st mode. 
Almost total fluid axial energy at  
q = 1, m ~ 2. 

30.659, 3.0011 { χs }T     =   { 1, -1, ~0, ~0, -- }     

{%KE s}   =   { ~0, ~0, ~0, ----- } p

{%KE
x
fq}   =  {99.99, ~0, ~0, --  } 

{%KE
r
fq }  =  {~0, ~0, ~0, ------  } 

Weakly coupled ac/st mode. 
Almost total fluid axial energy at  
q = 1, m ~ 3. 

39.651, 3.8813 { χs }T     =   {~0, 1, ~0, ~0, -- }     

{%KE s}   =   { ~0, 93.53, ~0, - } p

{%KE
x
fq}   =  { 6.22, ~0, ~0, - } 

{%KE
r
fq }  =  {~0, 1.43, ~0, ---  } 

Coupled st/ac mode at s = 2, q
m ~ 4. 

 =1 , 

40.955, 4.0089 { χs }T     =   {~0, 1, ~0,------  }      

{%KE s}   =   {~0, 6.01, ~0, --  } p

{%KE
x
fq}   =  {93.90, ~0, -----  } 

{%KE
r
fq }  =  {~0, ~0, ~0, ----  } 

Weakly coupled ac/st mode. 
Almost total fluid axial energy at  
q = 1, m ~ 4. 

51.099, 5.002 { χs }T     =   {0.54, 1, -0.17,-- }     

{%KE s}   =   {~0, ~0, ~0, ---- } p

{%KE
x
fq}   =  { 99.9, ~0, -------} 

{%KE
r
fq }  =  { ~0, ~0, ~0, ---- } 

Weakly coupled ac/st mode. 
Almost total fluid axial energy at  
q = 1, m ~ 5. 

61.3, 6.001 { χs }T     =   {0.78, 1, -0.46,-- }     

{%KE s}   =   {~0, ~0, ~0, ----  } p

{%KE
x
fq}   =  {99.99, ~0, ~0, -- } 

{%KE
r
fq }  =  {~0, ~0, ~0, ------ } 

Weakly coupled ac/st mode. 
Almost total fluid axial energy at  
q = 1, m ~ 6. 
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ȟ2, ȕ  Mode Description 
71.52, 7.0009 { χs }T    =   {0.83, 0.9, -1, ---} 

{%KEps}   =   {~0, ~0, ~0,------} 
{%KE

x
fq}   =  {99.99, ~0, -------} 

{%KE
r
fq }  =  {~0, ~0, ~0,-------} 

Weakly coupled ac/st mode. 
Almost all fluid axial energy at    
q = 1, m ~ 7. 

81.73, 8.0004 { χs }T    =   {0.28, 0.28, -1, --}      

{%KEps}   =   {~0, ~0, ~0, ----  } 
{%KE

x
fq}   =  {99.99, ~0,--------} 

{%KE
r
fq }  =  {~0, ~0, ~0, ------} 

Weakly coupled ac/st mode. 
Almost all fluid axial energy at    
q = 1, m ~ 8. 

83.7, 8.193 { χs }T     =   {0.18, -0.22, 1,---}     

{%KEps}   =   { ~0, ~0, ~0,------} 
{%KE

x
fq}   =  { ~0, ~0, ~0, -----} 

{%KE
r
fq }  =  {~0, 99.99, ~0, ---} 

Weakly coupled ac/st mode. 
Almost all fluid radial energy at    
q = 2. 

84.32, 8.254 { χs }T     =   {0.16, -0.19, 1,---}     

{%KEps}   =   {~0, ~0, ~0,-------} 
{%KE

x
fq}   =  {~0, 1.47, ~0,-----} 

{%KE
r
fq }  =  {~0, 98.5, ~0,-----} 

Same as above except small axial 
fluid component at q = 2, m ~ 8. 

86.15, 8.433 { χs }T     =   {~0, -0.1, 1,-----}      

{%KEps}   =   {~0, ~0, ~0, -----} 
{%KE

x
fq}   =  {~0, 5.62, ~0, ---} 

{%KE
r
fq }  =  {~0, 94.38, ~0,--} 

Same as above except growing 
axial fluid component. 

88.85, 8.698 { χs }T     =   {~0, ~0, 1, ~0,--}      

{%KEps}   =   {~0, ~0, 63,-----} 
{%KE

x
fq}   =  {0.4, 4.3, ~0, ---} 

{%KE
r
fq }  =  {~0, 32 , ~0,--} 

Strongly coupled st/ac mode 
between s = 3 on plate and radial 
fluid mode at  q = 2. 

89.31, 8.742 { χs }T     =  {~0, ~0, 1, ~0,--}      

{%KEps}   =   {~0, ~0, 36.9,---} 
{%KE

x
fq}   =  {1, 7.4, ~0,-------} 

{%KE
r
fq }  =  {~0, 55.3, ~0, -----} 

Strongly coupled ac/st mode 
between s = 3 on plate and radial 
fluid mode at  q = 2. 

91.97, 9.002 { χs }T    =   {~0, ~0, 1, ~0,--}      

{%KEps}   =   {~0, ~0, 0.6, ----} 
{%KE

x
fq}   =  {99.4, ~0,------} 

{%KE
r
fq }  =  {~0, ~0, ~0,-----} 

Weakly coupled ac/st mode. 
Almost all fluid axial energy at    
q = 1, m ~ 9. 

                                                                                             
 
Table 3 � Modes of free vibration of structural/fluid interacting system with associated energy 
vectors.                 
 
From the results of Table 3 one has a clear impression of the physical significance and 
characteristics of each mode of vibration. For example, consider now once again the two 
modes at values of ȟ2  of 20.466 and 30.659 respectively. From Table 3 we can 
immediately see that these are two weakly coupled, strong acoustic modes and as such 
the associated vectors,{χs }T , are unrepresentative of the actual situation. A 
interesting feature illustrated in Table 3 is that for the higher modes of vibration 
around the frequencies close to that of the natural frequency associated with the plate 
in vacuo at s = 3,  (89.104), (see the cases ȟ2  = 88.85 and 89.31), the modes have a 

strong acoustic component on the basis of percentage energy; 37% and 63% 
respectively. This indicates that at these higher natural frequencies of the coupled 

2
3ξ
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system, the fluid behaves as an energy absorber thus protecting the structure from the 
high vibratory energy associated with the plate in vacuo at the third natural mode. Too 
illustrate this point, Figure 3a shows a typical vibration energy plot (to the base of 
non-dimensional frequency) which one would expect for this plate in vacuo if 
damping was negligible. On the other hand Figure 3b shows the corresponding plot 
for the vibration energy of the plate if it was now in contact with the solid cylindrical 
fluid cavity described above and only the vibration on the surface of the plate is 
measured; as is the case in standard modal analysis. One can immediately see the 
dramatic difference between the two plots and illustrates well the implications of 
structural/fluid interaction. Such a situation can obviously give rise to difficulties for 
dynamicists performing standard procedures of structural modal analysis.  
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4.     CONCLUSIONS 

 

A theoretical - analytical method, based on the based upon the Euler Bernoulli and 
Helmholtz equations and the Galerkin method, has been developed for the frequency-
modal analysis of a coupled vibroacoustic system. This form of analysis results in an 
elegant system eigen matrix equation which readily indicated the relevant parameters 
governing the behaviour of the coupled system and could be equally applied to other 
more general forms of plates and structure. The convergence of the solution is fast and 
would appear to be very insensitive to changes of the assumed form of mode shapes 
associated with the plate in vacuo.  The analysis was extended to describe the natural 
coupled modes in terms of the relative energy associated with each of the two sub-
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systems, plate and fluid. This was demonstrated to give an excellent insight into the 
physical characteristics of structural/fluid coupled modes and in a forced vibration 
situation, the analyst would gain valuable information with respect to where the 
energy of excitation would direct itself. In addition, by considering the general 
characteristics of the coupled system shown by the sub-system modal energy 
representation, it can be deduced that general structural modal analysis for the purpose 
of predicting in service vibration response and the non destructive method of 
structural health monitoring based upon vibration signatures would require to be 
deployed with increasing care when applied to such coupled systems. 
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