
AAS 13-860

HALO ORBIT TARGETING GUIDANCE VIA HIGHER ORDER
SLIDING TECHNIQUES

Jules Simo∗ and Roberto Furfaro † and Daniel R. Wibben ‡

In this paper, the Multiple Sliding Surface Guidance (MSSG) algorithm has been
implemented and simulated to verify the ability to target the insertion point of
a suitable halo orbit in the vicinity of the Sun-Earth libration points. Based on
Higher-Order Sliding Control (HOSC) theory, the proposed MSSG algorithm com-
putes an acceleration command that target a specified state by considering only
knowledge of the current and desired position and velocity. Results show that the
guidance scheme is able to successfully target a suitable state for proper orbital in-
sertion. Furthermore, it will be shown how the algorithm can be used to target the
L1 point in the Sun-Earth system. A detailed study has also been performed to in-
vestigate the guidance performances as function of the guidance parameters. The
global stability of the proposed guidance scheme is proven using Lyapunov-based
approach.

INTRODUCTION

The design of space missions to remain in the vicinity of an equilibrium point in a three-body sys-
tem has been a favorite topic over the last decades. The model of the restricted three-body problem
has been used extensively in the study of problems of celestial mechanics.1, 2 The initial applications
considered a halo orbit near the translunar libration point for a single communications satellite to
link the Earth with the far side of the Moon.3 The Halo orbit is a special case of Lissajous orbit
where the in-plane and out-of-plane frequencies are equal.4, 5, 6, 7, 8, 9 Using the Earth-Moon System
as the primaries in the circular restricted three-body problem, a hybrid concept for displaced lunar
orbits has been developed.10, 11, 12 A natural extension of the hybrid concept is then to investigate
the possible transition to a binary asteroid system, as an application of the restricted problem.12

Thus, a feedback linearization control scheme was implemented to perform stabilization and trajec-
tory tracking for the nonlinear system.10, 11, 12 The first complete orbit aroud the Sun-Earth L1 point
was accomplished by the ISEE-3 (International Sun-Earth Explorer-3) spacecraft in 1979. This
laid the groundwork for many later missions, since the Sun-Earth L1 would be an ideal location to
continuously monitor the interplanetary environment upstream from the Earth.

The control issue highlights the multidisciplinary nature of the halo orbit guidance problem. The
MSSG algorithm has its theoretical foundation on the well-known sliding control theory,13 as well
on the more recently developed HOSC approach.14, 15, 16, 17, 18, 19 Sliding mode Control has been
recently employed to develop innovative and more robust algorithms for endo-atmospheric flight
system guidance.18 In particular, sliding mode control methods have emerged as attractive tech-
niques that can be applied to develop robust missile autopilots18, 19 and guidance algorithms.20, 21
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Figure 1. Schematic location of the five Lagrange points in the Sun-Earth System.

However, such non-linear guidance design methods have rarely been used to design guidance algo-
rithms for planetary precision landing. More recently, sliding control theory has been investigated
as a mean to develop two classes of robust guidance algorithms for both precision lunar and as-
teroid landing.22, 23, 24, 25 Further, the MSSG is designed on the principles of two-sliding mode
control, employs multiple sliding surfaces to generate on-line targeting trajectories that are guar-
anteed to be globally stable under bounded pertubations.14, 15, 16, 17 Two sliding surface vectors are
then concatenated in such a way that an acceleration command that drives the second surface to zero
automatically drives the dynamical system on the first surface in a finite time. The on-line trajectory
generation and the determination of the guidance command require only knowledge of the current
and desired position and velocity.

This paper will use the MSSG optimal guidance scheme to successfully target a suitable state
for proper orbital insertion. The next stage involved targeting the L1 point in the Sun-Earth system
for various mission profiles. Moreover, the global stability of the proposed guidance algorithm is
proven using a Lyapunov-based approach.

CIRCULAR RESTRICTED THREE-BODY PROBLEM

The circular restricted three-body problem (CRTBP) describes the dynamics of a massless body
attracted by two point masses revolving around each other in a circular orbit. In the CRTBP, the
motion of a particle (spacecraft) of negligible mass is considered moving under the gravitational
influence of two massive bodies, defined as the primaries. It is assumed that the two primaries
rotate in circular orbits about their common center of mass. The center of mass is located at the
barycenter on the line joining the primaries. The system of interest in this paper is the Sun-Earth
system such that m1 represents the Sun and m2 represents the Earth, and the motion of a spacecraft
of much smaller mass is considered. The unit mass is taken to be the total mass of the system
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(m1 + m2) and the unit of length is chosen to be the constant separation between m1 and m2.
The time unit is defined such that m2 orbits around m1 in time 2π. Under these considerations
the masses of the primaries in the normalized system of units are m1 = 1 − µ and m2 = µ, with
µ = m2/(m1 +m2).

The libration points are the equilibrium solutions of the restricted three-body problem. The three
collinear libration points L1, L2 and L3 have been found to exist on the x-axis. The triangular
libration points L4 and L5 form an equilateral triangle with the two primaries (Figure 1). As already
noted, libration points are stationary equilibrium points. It is then possible to find bounded motion
in the region of the libration points. The most general motion of this type to be produced in the
vicinity of the libration points is a quasi-periodic trajectory.

EQUATIONS OF MOTIONS

Let (x, y, z) be the position of the infinitesimal mass in the rotating frames.The nondimensional
equations that govern the motion of the infinitesimal mass in the CRTBP are given by

ẍ− 2ẏ = x− 1− µ
r3

1

(x+ µ)− µ

r3
2

(x− 1 + µ), (1)

ÿ + 2ẋ =

(
1− 1− µ

r3
1

+
µ

r3
2

)
y, (2)

z̈ = −

(
1− µ
r3

1

+
µ

r3
2

)
z, (3)

where r1 and r2 are equal to the distance from the third body to the primary and secondary,
respectively

r1 =
√

(x+ µ)2 + y2 + z2,

r2 =
√

(x− 1 + µ)2 + y2 + z2.

GUIDANCE MODEL

The fundamental equations of motion of a spacecraft moving in the gravitational field of a plan-
etary body can be described using Newton’s law. The equations of motion can be written as

ṙ = v, (4)

v̇ = 2w × v + w ×w × r +
∂UT

∂r
+ ac + ap. (5)

Here, r = [x, y, z]T is the position vector in the rotating frame, v = [vx, vy, vz]T is the velocity
vector, ac = [acx, acy, acz]T is the acceleration command, and ap = [apx, apy, apz]T is the perturb-
ing acceleration that accounts for unmodeled/unknown forces (e.g., gravity field inaccuracies, solar
radiation pressure, and nth-body pertubations).
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The equations of motion can be explicitly written in their scalar form as

ẋ = vx, (6)

ẏ = vy, (7)

ż = vz, (8)

v̇x = 2wvy + w2x+
∂U

∂x
+ acx + apx, (9)

v̇y = −2wvx + w2y +
∂U

∂y
+ acy + apy, (10)

v̇z =
∂U

∂z
+ acz + apz. (11)

The mathematical model described in Eqs. (4-11) is employed to derive the guidance equations.

GUIDANCE ALGORITHM DEVELOPMENT

Sliding Control Theory

The sliding control methodology can be defined as an elementary approach to robust control.13

Intuitively, it is based on the observation that it is much easier to control non-linear and uncertain
first-order systems (i.e., systems described by first-order differential equations) than nth-order sys-
tems (i.e., systems described by nth-order differential equations). Generally, if a transformation is
found such that an nth-order problem can be replaced by a first-order problem, it can be shown
that, for the transformed problem, perfect performance can be in principle achieved in presence of
parameter inaccuracy. As a drawback, such performance is generally obtained at the price of higher
control activity. Consider the following single-input/single-output (SISO) nth-order dynamical sys-
tem

dn

dtn
x = f(x) + b(x)u. (12)

Here, x is the output state, u is the control variable, and x = [x, ẋ, ẍ, · · · , x(n−1)]T is the state
vector. Both the nonlinear plant dynamics f(x) and the control gain b(x) are assumed to be not
exactly known. Under the condition that both f(x) and b(x) have a known upper bound, the sliding
control goal is to get the state x to track the desired state xd = [xd, ẋd, ẍd, · · · , x

(n−1)
d ]T in presence

of model uncertainties. The time-varying sliding surface is introduced as a function of the tracking
error x̃ =x - xd = [x̃, ˙̃x, ¨̃x, · · · , x̃(n−1)]T by the following scalar equation

s(x, t) =
(
d

dt
+ λ

)n−1

x̃. (13)

Here, λ is a strictly positive constant. For example, if n = 2 we obtain

s(x, t) = ˙̃x+ λx̃ = 0. (14)

With the definitions in Eq. (13) and Eq. (14), the tracking problem is reduced to the problem of
forcing the dynamical system in Eq. (12) to remain on the time-varying sliding surface. Clearly,
tracking an n-dimensional vector xd has been reduced to the problem of keeping the scalar sliding
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surface to zero, i.e. the problem has been reduced to a first-order stabilization problem in s. The
simplified first-order stabilization problem can be achieved by selecting a control law such that,
outside the sliding surface s(x, t), the following condition is satisfied:

1
2
d

dt
s2 ≤ −η|s|. (15)

Here, η is a strictly positive constant. Eq. (15), also called the “sliding condition”, explicitly
states that the distance from the sliding surface decreases exponentialy along all system trajectories.
Generally, constructing a control law that satisfies the sliding condition is fairly straightforward.
For example, using the Lyapunov direct method, one can select a candidate Lyapunov function as
follows

V (s) =
1
2
sT s. (16)

Eq. (16) satisfies the following two conditions: V (0) = 0 and V (s) > 0 for s > 0. By taking the
derivative of Eq. (16), it is easily concluded that the sliding condition (Eq. (15)) is satisfied. The
control law is generally obtained by substituting the sliding control definition, Eq. (14), and the
system dynamical equations, Eq. (12), into Eq. (15).

Multiple Sliding Surface Guidance Design

The circular restricted three-body problem (CRTBP) describes the dynamics of a massless body
attracted by two point masses revolving around each other in a circular orbit. The overall approach
to MSSG development for a CRTBP is to employ the notion that the motion of the guided spacecraft
forced to exist in a 2-sliding mode. The following definition clarifies the concept:

Definition 1 Consider a smooth dynamical system with a smooth output s(x) (sliding function).
Then, provided that s, ṡ, s̈, · · · , sr−1 are continuous and that s = ṡ = s̈ = · · · = sr−1 = 0, then
the motion on the set {s, ṡ, s̈, · · · , sr−1} = {0, 0, 0, · · · , 0} is said to exist on a r-sliding mode.

For a class of sliding surfaces that are of interest to guidance problems applied to the CRTPB,
the dynamics of the system is such that the sliding surfaces are of order two. Let us define the first
sliding vector surface in the following way

s1 = r − rd. (17)

Here, rd is the position of the desired (target) point on the Halo orbit (insertion point). Taking
the derivative of the s1, we obtain

ṡ1 = ṙ − ṙd = v − vd, (18)

where vd is the desired landing velocity. The guidance problem can be formulated as a standard
control problem: Find the acceleration command law such that, in a finite time tF , s1 → 0 and
ṡ1 → 0. It is easily verified that the sliding surface is of relative degree two:

s̈1 = v̇ − v̇d = 2w × v + w ×w × r +
∂UT

∂r
+ ac − v̇d. (19)
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The guidance objective is achieved by setting ṡ1 as a virtual controller and using a backstepping
approach. More specifically, ṡ1 is found such that the first sliding surface is driven to zero in a finite
time. The virtual controller can be conveniently selected as

ṡ1 = − Λ
tF − t

s1, (20)

where Λ = diag{Λ1,Λ2,Λ3} is a diagonal matrix of guidance gains. To drive the first sliding
surface to zero, the virtual controller ṡ1 must be globally stable. The global stability of ṡ1 can be
shown by choosing the following candidate Lyapunov function

V1 =
1
2
sT

1 s1. (21)

Accordingly, V1 has the following properties

V1(0) = 0 if s1 = 0
V1(s1 > 0 ∀s1 6= 0 (22)

V1(s1)→∞ if s1 →∞.

In addition, for stability, the time derivative of V1 must be negative definite everywhere. Imposing
positive guidance gains {Λ1,Λ2,Λ3} > 0 and setting s1 = {s1i, i = 1, 2, 3}, one obtains

V̇1 = sT
1 ṡ1 = − 1

tF − t
sT

1 Λs1 = − 1
tF − t

(Λ1s
2
11 + Λ2s

2
12 + Λ3s

2
13) < 0. (23)

However, it is generally desirable that the matrix gains are all greater than one to ensure that
both sliding surface and its derivative approach zero in a finite time. Indeed, the time variation of
the sliding surface vector s1 can be explicitly derived as function of the guidance gains. Applying
separation of variables to Eq. (20), one obtains

ds1i

s1i
= − Λidt

tF − t
, (24)

where i = 1, 2, 3 are the components of the sliding surface vector. Eq. (24) can be integrated in
closed form to obtain

ln(s1i) = Λi ln(tF − t) + Ci. (25)

By imposing the initial conditions s1(0) = s10 and taking the exponential of both sides, the
solution becomes

s1i(t) = s1i(tF − t)Λi , (26)

or in vector form
s1(t) = s10(tF − t)Λ. (27)
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The derivative of the sliding surface vector can be also explicitly derived as

ṡ1i(t)Λis1i(tF − t)Λi−1, (28)

or in vector form

ṡ1(t) = Λs10(tF − t)Λ−I . (29)

As it can be seen from Eq. (27), as long as Λi > 0 (i = 1, 2, 3), the sliding surface vector
will achieve zero in a finite time. However, if Λi < 1 (i = 1, 2, 3), the derivative of the sliding
surface vector goes to infinity for t = tF . Therefore, if the matrix gains are selected such that
Λi > 1 (i = 1, 2, 3) both the sliding surface vector and its derivative go to zero as t → tF . At the
time where the targeting maneuver for Halo orbit insertion is initiated, the spacecraft is generally
characterized by position and velocity such that Eq. (20) is not satisfied. Importantly, to derive a
meaningful guidance law, ṡ1 must be explictly linked to the acceleration command (or spacecraft
thrust) that must be executed to drive both s1 and ṡ1 to zero. The subsequent idea is to define a
second sliding surface vector such that an acceleration command can be found that drives s1 from
its initial state to a trajectory defined by the first-order non-linear equation Eq. (30). Moreover,
it is required that the acceleration command maintains the system on the second surface until s1,
ṡ1 → 0 is achieved. The second sliding surface vector is defined in the following way

s2 = ṡ1 +
Λ

tF − t
s1. (30)

Importantly, the new sliding surface vector is of relative degree 1 with respect to the acceleration
command. It can be easily verified that the acceleration command appears explicitly within the
expression of the first derivative of s2

ṡ2 = s̈1 +
Λ

tF − t
ṡ1 +

Λ
(tF − t)2

s1. (31)

Using Eq. (19) it is explicitly found that

ṡ2 = 2w × v + w ×w × r +
∂UT

∂r
+ ac(t) +

Λ
tF − t

ṡ1 +
Λ

(tF − t)2
s1 − v̇d. (32)

The desired acceleration command ac(t) (guidance law) is determined using a Lyapunov ap-
proach. Define a second Lyapunov candidate function as follows

V2 =
1
2
sT

2 s2. (33)

The Lyapunov function V2 satisfies conditions similar to the one defined for V1 (see Eq.(22).
Moreover, its time derivative can be explicitly computed as

V̇2 = sT
2 ṡ2 = sT

2 {2w × v + w ×w × r +
∂UT

∂r
+ ac(t) + Λ

(tF − t)ṡ1 + s1

(tF − t)2
− v̇d}. (34)
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The acceleration command is selected as follows

ac(t) = −{2w × v + w ×w × r +
∂UT

∂r
+ Λ

(tF − t)ṡ1 + s1

(tF − t)2
− v̇d + Φsgn(s2)}. (35)

Eq. (35) is the Multiple Sliding Guidance Law (MSSG) adapted to account for the dynamics typical
of the CRTBP. The matrix coefficients Φ = diag{Φ1,Φ2,Φ3} can be selected as

Φi =
s2i(0)
t?F

. (36)

Using Eq. (36), one can show that the second sliding surface vector is driven to zero in a finite
time t?F < tF . In fact, by replacing the guidance law explicitly derived in Eq. (35) into Eq. (32),
the dynamics of the second sliding surface vector becomes

ṡ2 = −Φsgn(s2). (37)

Noting that s2 does not change sign before reaching zero, Eq. (37) can be integrated between
zero and t to yield

s2i(t) = s2i(0)− |s2i(0)|
t?F

t. (38)

Figure 2. Halo orbit insertion at Sun-Earth L1 Libration point.

Clearly, the second sliding surface vector goes to zero as t→ t?F . Importantly, the derived MSSG
law for Halo orbit insertion is globally stable. Inserting Eq. (35) into Eq. (34) and augmenting the
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equations of motion to account for the perturbing acceleration, the Lyapunov function first derivative
V̇2 becomes

V̇2 = sT
2 ṡ2 = sT

2 {ap(t)−Φsgn(s2)} < 0. (39)

The time derivative of the second Lyapunov function is always less than zero if an upper bound
for the perturbing acceleration aMAX

p is available. In such a case, the matrix coefficients Φ can
be selected such that Φi > |aMAX

pi |. The second Lyapunov function is therefore decrescent and
by virtue of the Lyapunov stability theorem for non-autonomous systems s2 → 0 as t → t?F .
Consequently, s1, ṡ1 → 0 as t→ tF .

SIMULATION RESULTS

A novel non-linear guidance algorithm for spacecraft approaching a target vehicle in a halo orbit
in the Sun-Earth system is presented. The guidance law formulation is implemented in the simu-
lation plattform according to Eq. (35). MSSG has been implemented and simulated to verify the
ability to target the insertion point of a suitable halo orbit around the L1 point of the Sun-Earth sys-
tem, as shown in Figure 2 (280,000 km radius is assumed). The guidance algorithm is required to
drive the spacecraft in a halo orbit. The results show that the guidance scheme is able to successfully
target a suitable state for proper orbital insertion. Furthermore, the MSSG algorithm can be used
to target the L1 point in the Sun-Earth system. The effect of the guidance matrix Λ on the guided
trajectories is analysed. The simulations are initiated at t = 0 and conducted until approximately 70
days. Figure 3 shows the MSSG guided trajectory to the L1 Libration point in the Sun-Earth system.
The MSSG guidance gains are set to be Λ = diag{2, 4.6} for the simulations. The time evolution
of the position is plotted in terms of components in Figure 4 (a) and Figure 4 (b) for the velocity.
The acceleration variation components appears in Figure 5 for various guidance gains. The MSSG
algorithm generates trajectories that can be subdivided in two phases. The acceleration command
drives the second sliding surface to zero in the first phase of the flight (0 < t < t?F ). The second
phase is initiated once the second surface is reached (t = t?F ). Thus, the first surface is driven to zero
during this phase according to the nonlinear first-order dynamics given by Eq. (20). The magnitude
of the acceleration command tends to increase for each of the three components with the guidance
parameter, which regulates the rate at which the first surface is reached. Although the time of fligh is
fixed, the rate of convergence depends on the parameter Λ. The magnitude of the total acceleration
command is shown in Figure 6. The time history of the sliding surface s1 is depicted in Figure 7
(a) and Figure 7 (b) for s2. The norm of the second sliding surface is driven to zero at t = t?F and
maintained within a prescribed tolerance for the rest of the flight. The performances degradated for
lower values of the guidance gains. The effect of the rate of convergence can be clearly seen in
Figure 7 (a), in which the guidance parameter influences the shape of the sliding surface norm. The
effects on the transfer time and ∆v are plotted for 110 days in Figure 8. It should be noted that t?F
has a strong influence in both shaping the trajectory and on the overall acceleration magnitude.
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Figure 3. MSSG guided trajectory to the L1 Libration point.
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(a)
(b)

Figure 4. (a) Position variation components; (b) Velocity variation components.
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(a) (b)

(c)

Figure 5. Acceleration variation components.
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Figure 6. Magnitude of the total Acceleration Command.

(a) (b)
Figure 7. (a) Sliding surface time response, s1; (b) Sliding surface time response, s2.
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(a) (b)
Figure 8. (a) ∆v sequence for Λ = diag{2, 4, 6}; (b) ∆v sequence for t?F = {0.25, 0.5, 0.75}.

CONCLUSIONS

This paper studies the trajectory targeting and guidance problem in the Sun-Earth system. The
proposed MSSG algorithm uses a HOSC theory and computes an acceleration command that target
a specified state by considering only knowledge of the current and desired position and velocity.
The discussion and practical application of the MSSG algorithm to target the insertion point of
a suitable halo orbit in the vicinity of the Sun-Earth libration points has been presented. While
not intended to be a complete investigation, a thorough halo orbit targeting should be made later.
Moreover, a practical example of the algorithm to target the L1 point in the Sun-Earth system has
been demonstrated. The robustness of the algorithm against pertubations and unmodeled dynamics
make it ideal for on-board targeting and guidance problem.
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