
 1

NEURAL-BASED TRAJECTORY SHAPING APPROACH FOR
TERMINAL PLANETARY PINPOINT GUIDANCE

Roberto Furfaro,*Jules Simo†, Brian Gaudet‡, Daniel R. Wibben§

In this paper, we present an approach to pinpoint landing based on what we

consider to be the next evolution of path shaping methodologies based on

potential functions. Here, we employ Extreme Learning Machine (ELM)

theories to devise a Single layer Forward Network (SLFN) that learns the

relationship between current spacecraft position and the optimal velocity field

required to shape the path to the surface in a fuel efficient fashion. ELM

techniques enable fast and accurate training as well as better generalization. The

network is trained using open-loop, fuel-efficient trajectories that are

numerically generated using pseudo-spectral methods. After test and validation,

the SLFN becomes a critical element in the linear guidance algorithm loop.

More specifically, a Linear Quadratic Regulator (LQR) is employed to track the

optimal velocity field which is naturally defined to be attractive to the landing

target. The guidance approach is tested on a simulation environment to evaluate

the performance of proposed algorithm. Monte Carlo simulations show that the

algorithm achieve a low guidance residual error which is less than one meter in

position and less than -0.9 m/sec in impact velocity.

INTRODUCTION

Future unconstrained, science-driven, robotic and human missions to Mars and other planetary

bodies will require a high degree of landing accuracy. Over the past decade, the Mars pinpoint

landing problem, i.e. the ability to guide one or more landers to a specified point on the Martian

surface with accuracy less than 100 m, has been steadily gaining importance1,2. Indeed, the

sustained robotic exploration experienced by the red planet, as well as the continued interest in

conceiving and studying missions that may one day deliver humans to Mars contributed to

generate the need for more precise delivery of cargo on to the planet’s surface3. The science

return of past robotic missions (e.g. Viking 1 and 2, Mars Pathfinder, Mars Exploration Rovers,

Phoenix Lander) have been severely limited by the landing accuracy provided by the Entry,

Descent, and Landing (EDL) system3,4. At the beginning of the Mars exploration era, safety was

* Assistant Professor, Department of Systems and Industrial Engineering, Department of Aerospace and Mechanical

Engineering, University of Arizona, 1127 E. James E. Roger Way, Tucson, Arizona, 85721,USA
† Academic Visitor, Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow, G1

1XJ, United Kingdom.
‡ Research Engineer, Department of Systems and Industrial Engineering, University of Arizona, 1127 E. James E.

Roger Way, Tucson, Arizona, 85721, USA
§ Graduate Student, Department of Systems and Industrial Engineering, University of Arizona, 1127 E. James E. Roger

Way, Tucson, Arizona, 85721, USA

AAS 13-875

 2

probably the major concern that lander designers had to face. Because knowledge of Mars’

surface characteristics (e.g. geomorphology, mineralogy, stratigraphy) was very limited,

exploring any portion of the planet would have provided an initial understanding of Mars natural

processes. Consequently, a standard practice was established where the spacecraft would be

delivered within a relatively large area that 1) guaranteed safety against possible terrain hazards

(e.g. large rocks, high surface slope) and 2) met a set of minimum science requirements. In such a

case, mission success is ensured without the need of precisely specifying the exact landing

location within the targeted area. The landing accuracy, usually characterized by the 3-sigma

landing ellipse, was established to be 135 km for Mars Pathfinder5, 120 km for Mars Phoenix

Mission6and 35 km for both Mars Exploration Rovers7. In all of the above mentioned cases, the

landing selection process was mostly constrained by finding relatively flat surfaces with the

smallest rock-size and crater-size distribution8. While safe, such areas may not necessarily yield

the highest science return. The on-going Mars Science Laboratory (MSL9, launched November

2011) has taken important steps toward enabling less constrained science. The final landing site,

which was selected out of a short list of four (4) possible locations10, was constrained to be no

larger than 10 km, i.e. the landing accuracy guaranteed by the newly designed system, the “Sky

Crane”11. Such improvement in accuracy was achieved by actively controlling the capsule’s bank

angle during the hypersonic entry phase11. Despite the abovementioned improvements, future

robotic missions will require additional pinpoint precision. For example, identification of targets

and/or locales that have the potential to yield the highest geological and exobiological

information12 may require systems capable of landing in their close proximity in spite of rough

terrain and other landing hazards. Human missions to Mars may require the delivery of cargo

packages on specific locations followed by crewed spacecraft landing next to the assets already

robotically delivered13.

Powered descent algorithms15,16 generally comprise of two major components, i.e. a) a

targeting (guidance) algorithm and b) a trajectory-following, real-time guidance algorithm. The

targeting algorithm, often referred to as “guidance” in the Mars landing community, is

responsible for generating a reference trajectory (position, velocity and thrust profile) that

explicitly defines the path driving the lander from the initial position (i.e., beginning of the

powered descent phase) to the desired landing location (target point). Conversely, the trajectory-

following algorithm is designed to close the loop on the desired trajectory ensuring that the

spacecraft follows the planned path. Generating guidance algorithms for Mars landing has been

the focus of many scientists and engineers15,16,17,18. Current practice for Mars and Lunar landing

employs a guidance approach where the reference trajectory is generated on-board. The trajectory

is computed as a time-dependent polynomial whose coefficients are determined by solving a

Two-Point Boundary Value Problem (TPBVP). Originally devised to compute the reference

trajectory used by the Lunar Exploration Module25-27, the method is currently employed to

generate a feasible reference trajectory comprising the three segments of the MSL powered

descent phase28. A fifth-order (minimal) polynomial in time satisfies the boundary conditions for

each of the three position components (downrange, crossrange and altitude). The required

coefficients can be determined analytically as a function of the pre-determined (fixed) time-to-go.

Recently, more research efforts have been devoted toward determining reference trajectories (and

guidance commands) that are fuel-optimal, i.e. minimum-fuel trajectories that satisfy the desired

boundary conditions and possibly additional constraints15,17,19. For such cases, analytical solutions

are possible only for the energy-optimal landing problem with unconstrained thrust18. To the best

of our knowledge, closed-form, analytical solutions for the full three-dimensional, minimum-fuel,

soft landing problem with state and thrust constraints are not available. Indeed, such trajectories

can be found only numerically using either direct or indirect methods. Solutions based on direct

methods are generally obtained by converting the infinite-dimensional optimal control problem

 3

into a finite constrained Non-Linear Programming (NLP) problem20. Recently, Acikmeseet al.19

devised a convex optimization approach where the minimum-fuel soft landing problem is cast as

a Second Order Cone Programming (SOCP21). The authors showed that the appropriate choice of

a slack variable can convexify the problem22. Consequently, the resulting optimal problem can be

solved in polynomial time using interior-point method algorithms23. In such a case and for a

prescribed accuracy, convergence is guaranteed to the global minimum within a finite number of

iterations. The latter makes the method attractive for possible future on-board implementation.

Moreover, the method has been extended to find solutions where optimal trajectories to the target

do not exist, i.e. the guidance algorithm finds trajectories that are safe and closest to the desired

target24.

Despite the abovementioned advancements in trajectory-generating (guidance) algorithms for

on-board determination of minimum-fuel flyable trajectories, such algorithms require a

significant amount of real-time computation. Moreover, once the trajectory is generated, the

guidance system has the additional burden of determining a closed-loop command that allows the

vehicle to follow the desired path. In this paper, we develop a novel guidance approach based on

a combination of trajectory shaping and neural network methodologies to devise an algorithm

capable of generating an acceleration command that guides the spacecraft to the desired location

on the planet’s surface with zero velocity (soft landing). During the mid-90s, McInnes29

developed a trajectory shaping approach for terminal lunar descent. The basic idea was to

investigate potential function methods30, to generate families of trajectories that are globally

convergent to the target landing location. The method, which relies on Lyapunov’s theorem for

determining the stability of non-linear systems, hinges on the definition of a scalar function which

satisfies the properties typically exhibited by a Lyapunov function. Under such conditions the

landing target is attractive and a descent path following the potential function gradient ensure

convergence and safe landing. Both velocity field and desired acceleration can be computed

analytically. However, the feedback trajectories derived via the potential methods are generally

not fuel-efficient. The idea behind the proposed guidance scheme is to approximate the potential

field and more importantly its gradient by using machine learning algorithm to learn the

relationship between position and desired velocity. A fuel-efficient vector field that is attractive to

the target point, can be numerically computed using optimal control theory. The numerical data

points can be employed to train a neural network which is therefore employed to within a linear

guidance scheme to determine the desired velocity as function of the position. Among the

possible plethora neural networks candidate for the job, we selected a class of networks called

Extreme Learning Machines (ELM31,33). Advantages of using such techniques will be illustrated

in the upcoming sections.

This paper is organized as follows. First the landing guidance problem is formulated.

Subsequently, a discussion of the guidance development is presented including trajectory shaping

and ELM theories, ELM design and training and a description of the EML-based linear guidance

algorithm. Finally the proposed approach is tested in typical simulation scenarios which include a

set of Monte Carlo simulation to evaluate the guidance residual error.

GUIDANCE PROBLEM FORMULATION

The planetary landing guidance problem that can be formulated as follows: given the current

state of the spacecraft, determine a real-time acceleration and attitude command program that

reaches the target point on the surface with zero velocity.

 4

Guidance Model: 3-D Equations of Motion

The fundamental equations of motion of a spacecraft moving in the gravitational field of a

planetary body can be described using Newton’s law. Assuming a mass variant system and a flat

planetary surface, the equations of motion can be written as:

 𝒓̇ = 𝒗 (1)

 𝒗̇ = −𝒈(𝒓) +
𝑻

𝑚𝐿

+ 𝒑 (2)

 𝑚̇𝐿 = −
||𝑻||

𝐼𝑠𝑝𝑔0
 (3)

Here, 𝒓 and 𝒗 are the position and velocity of the lander with respect to a coordinate system

with origin on the planet’s surface, 𝒈(𝒓) is the gravity vector, 𝑻 is the thrust vector,𝑚𝐿 is the mass

of the spacecraft, 𝐼𝑠𝑝 is the specific impulse of the lander’s propulsion system, 𝑔0 is the reference

gravity, and 𝒑 is a vector that accounts for unmodeled forces (e.g. thrust misalignment, effect of

higher order gravitational harmonics, atmospheric drag, etc.). If 𝒓 = [𝑥, 𝑦, 𝑧]𝑇 and 𝒗 =

[𝑣𝑥, 𝑣𝑦, 𝑣𝑧]
𝑇

 the equations of motion can be written by components as:

 𝑥̇ = 𝑣𝑥 (4)

 𝑦̇ = 𝑣𝑦 (5)

 𝑧̇ = 𝑣𝑧 (6)

𝑣𝑥 = −𝑔𝑥(𝑟) + (

𝑻

𝑚𝐿

)
𝑥

+ 𝑝𝑥 (7)

𝑣𝑦 = −𝑔𝑦(𝑟) + (

𝑻

𝑚𝐿

)
𝑦

+ 𝑝𝑦 (8)

𝑣𝑧 = −𝑔𝑧(𝑟) + (

𝑻

𝑚𝐿

)
𝑧

+ 𝑝𝑧 (9)

The considered mathematical model is a 3-DOF model with variable mass. This model is

employed to simulate spacecraft descent dynamics by the proposed guidance law.

LANDING GUIDANCE ALGORITHM DEVELOPMENT

Trajectory Shaping Guidance scheme

The Trajectory Shaping Guidance (TSG) algorithm is based on the idea that the spacecraft

path defining the closed-loop descent trajectory toward a planetary surface can be shaped to

follow a path that is attractive (i.e. ensure convergence toward the target) and safe (i.e. avoid

obstacles)29,30. Although vehicle path and velocity-altitude profile can be defined a-priori, this

will result in lack of flexibility and potential degradation in robustness. TSG relies on

methodologies based on potential functions to establish a class of trajectories that are globally

stable to the selected target location. As shown by McInnes29,30, potential functions can be

 5

selected to enable landing the spacecraft in regions of complex terrain, i.e. shape the landing

trajectories to reduce the probability of failure and/or avoid hazards.

Gravity
mLg(rL)

Range R

Crossrange C

Altitude H

Thrust
Tc

Perturbation
p

RM

rL

RM + rL

x

Landing Target

C
R

H Thrust angle
α

Thrust roll angle
φ

Planetary Surface

Figure 1.Guidance Reference Frame and Free-Body Force Diagram for a Planetary Lander

during the Powered Descent to the Designated Target

Potential functions methods are rooted in the Lyapunov stability theory for non-linear

systems. Such methods are applied by defining a scalar potential function that may represent the

topography of the landing location. To ensure the definition of a class of descent paths that

globally converges to the selected target location, one must develop a class of guidance

algorithms that ensure that the derivative of the potential function (gradient) along the trajectory

is always negative. Following the standard Lyapunov definition of a potential function, and

defining 𝒓 as the current spacecraft position and 𝒓𝑑 the desired position on the planet’s surface,

we have:

𝜙(𝒓𝑑) = 0

𝜙(𝒓) > 0, ∀𝒓 ≠ 𝒓𝑑 (10)

𝜙̇(𝒓) < 0, ∀𝒓 ≠ 𝒓𝑑

𝜙(𝒓) → 0, 𝑎𝑠 ‖𝒓‖ → ∞

According to the second Lyapunov’s theorem, it can be shown that the desired point 𝒓𝑑 is

globally attractive and all trajectories converge toward it. On this basis, McInnes29 used the

potential function method to generate families of descent path toward the lunar surface as

follows:

 6

1. The magnitude of the spacecraft velocity is shaped by specifying a pre-defined velocity

profile as function of the altitude

2. The direction of the velocity vector, which in turn defines the trajectory path, is shaped

using a potential function containing geometric information about the terrain surrounding

the landing location. As a result, one can find an acceleration command that forces the

vehicle to follow the negative of the gradient potential, which ensure global convergence

to the desired location.

Importantly, for a given potential function 𝜙(𝒓) that satisfies Eq.(10), one can define a

velocity field as follows:

𝒗 = −𝑣(ℎ)
∇𝜙(𝒓)

‖∇𝜙(𝒓)‖
 (11)

Where 𝑣(ℎ) is a pre-defined velocity-altitude profile (velocity magnitude shape). If the

potential function 𝜙(𝒓) has an analytical expression, one can easily find the acceleration

command required to follow the prescribed path as defined by the potential function and the

initial conditions. Indeed, the acceleration command is found as follows:

𝒂𝑐 = 𝚲𝒗 − 𝒈(𝒓) (12)

𝒗̇ = 𝚲𝒗, 𝚲 = {
𝝏𝒗

𝝏𝒓
}
𝟑𝒙𝟑

 (13)

Whereas this method has been previously studied, here we propose and evolution of the

potential function-based methodology by a) numerically approximating the gradient of the

potential function that yield a set of shaped path that are fuel-efficient and enforce specific

trajectory constraints and b) define a guidance algorithm that tracks the optimal velocity field as

function of the position.

Fuel-Efficient Velocity Field Computation via Extreme Learning Machines

The fundamental idea behind the guidance algorithm development is the ability to numerically

approximate the gradient of a fuel-optimal potential function. Such function 𝜙(𝒓, 𝒓𝑑) depends on

the actual position and desired (target) final position. Moreover, the gradient of the optimal

potential function generates a velocity field 𝒗(𝒓, 𝒓𝑑) that generates families of trajectories that are

a) fuel-efficient and b) satisfy specific constraints (e.g. thrust direction and flight path angle) and

c) drive the spacecraft to the desired point with a zero terminal velocity. Optimal control theory

can be employed to appropriately define the optimal control problem and numerically determine

fuel-efficient trajectories that satisfy specified boundary conditions as well as path and thrust

constraints. However, an explicit, closed-form representation of either 𝜙(𝒓, 𝒓𝑑) and/or 𝒗(𝒓, 𝒓𝑑) is

not generally available. However, if sufficient samples representing the functional relationship

between potential function and position, as well as velocity and position, are available, one can

employ machine learning techniques to numerically approximate the desired function. Over the

past two decades, Neural Networks (NN32) have emerged as powerful computational devise

capable of approximate any piecewise continuous function to the desired degrees. Biologically

 7

inspired, NNs are comprised of computational units called neurons that have the ability to learn

the relationship between any desired function (assuming that certain conditions are satisfied) from

inputs-output example. Here the goal is employ a class of neural networks called Extreme

Learning Machines (ELM31,33) to approximate the fuel-efficient velocity field.

Extreme Learning Machines: Theory

Computational intelligent techniques have been successfully used in learning functional

relationships that are only described by a limited about of data points. Most of such techniques

(e.g. NNs, Support Vector Machines (SVM)) are faced with many challenges including, slow

learning speed, poor computational scalability as well as requirement of ad-hoc human

intervention. Extreme Learning Machines have been recently established as an emergent

technology that may overcome some of the abovementioned challenges providing better

generalization, faster learning speed and minimum human intervention. ELMs work with

“generalized” Single Layer Forward Networks (SLFN, Figure 2). SLFN are computationally

designed to have a single hidden layer (which can be either Radial Basis Function (RBF) or other

activation functions) couple to a linear output layer. The key point is that the hidden neurons need

not to be tuned and their weights (training parameters) can be sampled from a random

distribution. Theoretical studies34 show that feed-forward networks with minimum output weights

tend to achieve better generalization. EML tend to reach a) the minimum training error and b) the

smallest norm of output weights with consequent improved generalization. Importantly, since the

hidden nodes can be selected and fixed, the output weights can be determined via least-square

methodologies.

Figure 2. Typical architecture of a Single Layer Forward Network (SLFN) which is the most

fundamental EML

 8

Consider a SLFN with L hidden nodes (Figure 2). The output function can be represented as

follows:

𝑓𝐿(𝒙) = ∑ 𝜷𝑖𝑔𝒊(𝒙)
𝐿
𝑖=1 = ∑ 𝜷𝑖𝐺(𝒂𝑖 , 𝑏𝑖, 𝒙)

𝐿
𝑖=1 𝑤𝑖𝑡ℎ 𝒙 ∈ 𝑹𝑑 , 𝜷𝑖 ∈ 𝑹

𝑚 (12)

For additive nodes with activation function 𝑔

𝐺(𝒂𝑖, 𝑏𝑖, 𝒙) = 𝑔(𝒂𝑖𝒙 + 𝑏𝑖) 𝑤𝑖𝑡ℎ 𝒂𝑖 ∈ 𝑹
𝑚, 𝑏𝒊 ∈ 𝑅 (13)

For RBF nodes with activation function 𝑔

𝐺(𝒂𝑖, 𝑏𝑖, 𝒙) = 𝑔(𝑏𝑖‖𝒙 − 𝒂𝑖‖)𝑤𝑖𝑡ℎ 𝒂𝑖 ∈ 𝑹
𝑚, 𝑏𝒊 ∈ 𝑅

+ (14)

Consider a training set comprising N distinct samples, i.e. [𝒙𝑖, 𝒕𝑖] ∈ 𝑹
𝑑 × 𝑹𝑚. The

mathematical model describing SLFNs can be cast as follows:

∑ 𝜷𝑖𝐺(𝒂𝑖 , 𝑏𝑖, 𝒙)
𝐿
𝑖=1 = 𝒐𝑗, 𝑓𝑜𝑟 𝑗 = 1,…… . , 𝑁 (15)

Stating that SLFNs can approximate N samples with zero error is equivalent to state that there

exist pairs (𝒂𝑖 , 𝑏𝑖) and 𝜷𝑖 such that:

∑ 𝜷𝑖𝐺(𝒂𝑖 , 𝑏𝑖, 𝒙)
𝐿
𝑖=1 = 𝒕𝑗, 𝑓𝑜𝑟 𝑗 = 1,…… . , 𝑁 (16)

Compactly:

𝑯𝜷 = 𝑻 (17)

Where the hidden layer output matrix 𝑯 is formally written as:

𝑯 = [
𝒉(𝒙1)
⋮

𝒉(𝒙𝑁)
] = [

𝐺(𝒂1, 𝑏1, 𝒙1) … 𝐺(𝒂𝐿 , 𝑏𝐿 , 𝒙1)
⋮ … ⋮

𝐺(𝒂1, 𝑏1, 𝒙𝑁) … 𝐺(𝒂𝐿 , 𝑏𝐿 , 𝒙𝑁)
]

𝑁×𝐿

 (18a)

 9

𝜷 = [
𝜷1
𝑇

⋮
𝜷𝐿
𝑇
]

𝐿×𝑚

and 𝑻 = [
𝒕1
𝑇

⋮
𝒕𝑁
𝑇
]

𝑁×𝑚

 (18b)

Huang et al.35 theoretically showed that SLFNs with randomly generated additive or RFB

nodes can universally approximate any desired (target) function over a compact subset of 𝑋 ∈
𝑹𝑑. Such results can be generalized to any piecewise continuous activation function in the hidden

node36. The following theorem holds true:

Theorem [36]: Given any non-constant piecewise continuous function 𝑔: 𝑅 → 𝑅, if

𝑠𝑝𝑎𝑛{𝐺(𝒂, 𝑏, 𝒙): (𝒂, 𝑏) ∈ 𝑹𝑑 × 𝑅 } is dense in 𝐿2, any continuous target function 𝑓 and any

function sequence {𝑔𝐿(𝒙) = 𝐺(𝒂𝐿 , 𝑏𝐿, 𝒙)} randomly generated based on any continuous sampling

distribution, 𝑙𝑖𝑚
𝐿→∞

‖𝑓 − 𝑓𝐿‖ holds with probability one if the output weights 𝜷𝑖are determined by

ordinary least square to minimize ‖𝑓(𝒙) − ∑ 𝜷𝑖𝑔𝒊(𝒙)
𝐿
𝑖=1 ‖.

The basic ELM can be constructed as follows. After selecting a sufficiently high number of

hidden nodes (ELM architecture), the parameters (𝒂𝑖, 𝑏𝑖) are randomly generated and remain

fixed. Training occurs by simply finding a least-square solution 𝜷 of the system
𝑯𝜷 = 𝑻, i.e. find 𝜷̂ such that

‖𝑯𝜷̂ − 𝑻‖ = min
𝜷
‖𝑯𝜷− 𝑻‖ (19)

ELM for Fuel-Efficient Velocity Field Approximation: Network Design and Training Set

Generation via Pseudo-Spectral Methods

At the core of the proposed methodology is the ability to approximate a fuel-optimal velocity

field that is representative of the gradient of a potential function. We employ ELM theory and we

design and train a SLFN capable of approximating 𝒗(𝒓, 𝒓𝑑). The development goes through the

following stages: 1) training set generation, 2) SLFN architecture design, 3) Training phase and

4) testing and validation phase.

Training set generation: Samples from an optimal (continuous) vector field may be generated

by numerically computing a set of fuel-efficient trajectories via proper application of the optimal

control theory. The basic minimum-fuel problem for planetary landing can be defined as follows:

Minimum-Fuel Problem: Find the thrust program that minimizes the following cost function

(negative of the lander final mass; equivalent to minimizing the amount of propellant during

descent):

max
𝑡𝐹,𝐓(∙)

𝑚𝐿(𝑡𝐹) = min
𝑡𝐹,𝐓(∙)

∫‖𝐓‖

𝑡𝐹

0

𝑑𝑡 (20)

 10

Subject to the following constraints (equations of motion):

𝒓̈𝐿 = −𝒈𝑳 +

𝑻

𝑚𝐿

 (21)

 𝑑

𝑑𝑡
𝑚𝐿 = −

‖𝑻‖

𝐼𝑠𝑝𝑔0
 (22)

and the following boundary conditions and additional constraints:

 0 < 𝑇𝑚𝑖𝑛 < ‖𝑻‖ < 𝑇𝑚𝑎𝑥 (23)

 𝒓𝐿(0) = 𝒓𝐿0, 𝒗𝐿(0) = 𝒓̇𝐿(0) = 𝒗𝐿0 (24)

 𝒓𝐿(𝑡𝐹) = 𝒓𝐿𝐹, 𝒗𝐿(𝑡𝐹) = 𝒓̇𝐿(𝑡𝐹) = 𝒗𝐿𝐹 (25)

 𝑚𝐿(0) = 𝑚𝐿𝑤𝑒𝑡 (26)

Figure 3. Samples of fuel-efficient trajectories and optimal velocity field. Right: Trajectories.

Left: Velocity Vectors

Here, the thrust is limited to operate between a minimum value (𝑇𝑚𝑖𝑛) and a maximum value

(𝑇𝑚𝑎𝑥). The problem formulated in Eq. (20-26) does not have an analytical solution and must be

solved numerically. Open-loop, fuel-optimal thrust program can be obtained using optimal

control software packages such as the General Pseudospectral Optimal Control Software

(GPOPS37). Importantly, a set of open-loop trajectories may be employed to describe the

relationship between the current position and the velocity vector, i.e. 𝒗𝑂𝑃𝑇 = 𝒗(𝒓, 𝒓𝑑) that

ensures a fuel-optimal path potentially subjected to flight-path constraints. GPOPS has been

employed to numerically simulate the powered descent phase over Mars. A set of 201 2-D

(vertical plane) fuel-optimal trajectories have been computed that are initiated at an altitude of

1500 meters, with a downrange comprised between -2000 meters and 0 meters (vertical descent).

-2000 -1500 -1000 -500 0
0

500

1000

1500

Downrange (m)

A
lt

it
u

d
e
 (

m
)

-2000 -1500 -1000 -500 0
0

500

1000

1500

Downrange (m)

A
lt

it
u

d
e
 (

m
)

 11

For each case, the initial descent velocity has been kept constant (-75 m/sec) whereas the initial

lateral velocity has been varied linearly between 100 m/sec (at -2000 meters downrange) to 0

m/sec (at 0 meters downrange). The lander is assumed to be a small robotic vehicle, with six

throttlable engines, one pointing in each direction (𝐼𝑠𝑝 = 292 sec). For these simulations, the

only dynamical force included is the gravitational force of the moon, as seen in Eq. (21). The

lander is assumed to weigh 1900 kg (wet mass) and is capable of a maximum (allowable) thrust

of 13 kN as well as a minimum (allowable) thrust of 5kN. For each of the optimal trajectories, the

position (ELM input) and velocity (ELM output) has been recorded 161 along the trajectories.

Note that the sampling has been naturally established as an input to GPOPS to compute an

accurate optimal solution. The total traning set is comprised of N = 201*161 = 32361 training

samples. Figure 3, shows trajectories and velocity sampled from the training set.

ELM design, training and test: A typical arichitecture of a SLFN has been described in

Figure 2. The network is comprised of an input layer (three nodes describing the current position)

and hidden layer (number of nodes defined by the designer) and an output layer (three nodes that

output the component of the optimal position). For a set of L hidden nodes and the above

specified training set, the following steps are taken to design the SLFN capable of approximating

the 𝒗𝑂𝑃𝑇 = 𝒗(𝒓, 𝒓𝑑):

Step1: randomly generate the parameters describing the hidden nodes (𝒂𝑖, 𝑏𝑖), 𝑖 = 1,… , 𝐿

Step 2: Compute the hidden layer output matrix 𝑯

Step 3: Compute the output weight vector 𝜷 by solving 𝑯†𝜷 = 𝑻

The matrix 𝑯† = 𝑯𝑇(𝑯𝑯𝑇)−1𝑯†or 𝑯† = (𝑯𝑇𝑯)−1𝑯𝑇if 𝑯𝑯𝑇 is singular) is called the

Moore-Penrose generalized inverse matrix. In computing the weights 𝜷, a positive value 1/𝜆 was

added to the diagonal of 𝑯𝑇𝑯 to improve the stability. Importantly, the linear weights and the

ELM output function are computed as follows

𝜷 = 𝑯𝑇 (
𝑰

𝜆
+𝑯𝑯𝑇)

−1
𝑻 (27)

𝒗𝑶𝑷𝑻(𝒓, 𝒓𝒅) = 𝒉(𝒓)𝜷 = 𝒉(𝒓)𝑯
𝑇 (

𝑰

𝜆
+𝑯𝑯𝑇)

−1
𝑻 (28)

One critical aspect of the ELM implementation is the selection of the the hidden number of

nodes which is a typical network design parameter. The matrix 𝑯 has dimension NxL where N =

16180 (size of the training set) and therefore 𝑯𝑯𝑇 has dimension LxL. The training occurs by

computing 𝜷 (see to Eq. (27)). Training is extremely efficient and fast (tens of seconds using a

MATLAB script in a standard quad-core laptop). To select the optimal number of hidden nodes,

the training phase has been repeated by systematically increasing the number of neurons and

recording the training performances. Figure 4 reports the root square mean error as function of the

number of hidden layers. As the number of hidden nodes is increased, the root mean square error

stabilizes. A value of L = 600 nodes has been selected as optimal architecture.

 12

The SLFN design is tested and validated on a set of data comprising data points belonging to

the training set on which the network has not been trained. Fifty percent of the overall training set

is devoted to test and validation. Indeed, after proper training, the SLFN is run on test and

validation input points and the output response predicted. Results are reported in figure 5 where a

complete regression analysis is reported. The later shows that the designed network has

generalized well, i.e. has learned the 𝒗𝑂𝑃𝑇 = 𝒗(𝒓, 𝒓𝑑) functional relationship on points not

included in the training set.

Figure 4: Root Mean Square Error (RMSE) as function of SLFN number of hidden nodes

Figure 5: Test and validation regression plots. Left: Regression on lateral velocity. Right:

regression on descent velocity.

0 100 200 300 400 500 600 700 800 900 1000

0.2

0.25

0.3

0.35

0.4

Number of Hidden Nodes

R
o

o
t

M
e

a
n

 S
q

u
a
re

 E
rr

o
r

(m
/s

e
c
)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Target

O
u

tp
u

t
~

=
 1

*T
a

rg
e
t

+
 -

0
.0

0
1
3

Lateral Velocity: R=0.99995

Data

Fit

Y = T

-80 -60 -40 -20 0

-80

-70

-60

-50

-40

-30

-20

-10

0

Target

O
u

tp
u

t
~

=
 1

*T
a

rg
e
t

+
 0

.0
1

5

Descent Velocity: R=0.99993

Data

Fit

Y = T

 13

Closed-Loop Guidance Design

The algorithm for neural-based trajectory shaping guidance heavily relies on the ability of the

system to compute the optimal vector field as function of the position. Once position is available,

the designed ELM is employed to compute the optimal vector field which becomes the desired

velocity. At each time step the optimal velocity field is propagated on-board using an Euler

propagator to compute the desired position. Both desired position and velocity are then fed to a

standard Linear Quadratic Regulator (LQR) which tracks the state by trading between accuracy

and effort. Figure 6 show a flow diagram of the proposed guidance scheme.

Inertial
Sensors

Autopilot

Compute the Acceleration Command

Inputs:
Current Position
Current Velocity
Gravity Model
Current Time (Clock-time Tag)

Desired Landing Position
Desired Landing Velocity

Begin

 tr̂

 tv̂

 tCa

Thrust Torques

Lander
Dynamics

Guidance Loop
10 Hz update

Compute current desired position and velocity

Compute ZEM and ZEV

 tDv

Linear Quadratic Regulator (LQR)

 T 2K

Compute ZEM and ZEV

Extreme Learning Machine

Compute the desired Optimal
Velocity Field

propagate)(tt 
 tDr

 tr̂

𝒂 = − 𝒙𝑳 − 𝒙

 𝑇 + − 𝑅−1 𝑇 + = 0

 = 𝑅−1 𝑇

Figure 6: Guidance algorithm flow diagram

GUIDANCE SIMULATIONS AND PERFORMANCE ANALYSIS

The neural-based, trajectory shaping guidance algorithm devised using a combination of ELM

theory for optimal velocity field approximation and closed-loop linear theory (tracking the

velocity field) has been tested in a simulation scenario implementing the equations of motion

Eq.(1-9). A powered descent phase describing the terminal guidance for Mars landing is

considered. The spacecraft lander properties are the same as reported in the previous section. At

this stage, the motion is constrained to occur in a vertical plane.The first set of simulations

consider one single guided trajectory starting at 𝒓(0) = [1000,1500]𝑇𝑚𝑒𝑡𝑒𝑟𝑠 with initial

velocity 𝒗(0) = [50,−74]𝑇𝑚/𝑠𝑒𝑐. The guidance algorithms takes over immediately to guide the

 14

lander toward the desired point on the Martian surface (set to be the origin of the reference

system) with zero velocity. Note that such conditions are not part of the training set employed to

train and test the proposed ELM. The guidance algorithm is activated with 100 Hz frequency.

Figure 7 shows the results of the simulation reporting A) the guided trajectory while moving

through the velocity field generated by the designed SLFN, B) the altitude and downrange as

function of time; C) the lateral and descent velocity as fucntion of time; and D) the magnitude of

the thrust command.

0 5 10 15 20 25 30 35
-1000

-500

0

500

1000

1500

Time (sec)

P
o

s
it

io
n

 (
m

)

Range Guided

Altitude Guided

Range Optimal

Altitude Optimal

-2000 -1800 -1600 -1400 -1200 -1000 -800 -600 -400 -200 0
0

500

1000

1500

Range (m)

A
lt

it
u

d
e
 (

m
)

0 5 10 15 20 25 30 35
-100

-50

0

50

100

Time (sec)

V
e
lo

c
it

y
 (

m
)

Lateral Velocity Guided

Descent Velocity Guided

Lateral Velocity Optimal

Descent Velocity Optimal

0 5 10 15 20 25 30 35
0

2000

4000

6000

8000

10000

12000

14000

16000

Time (sec)

T
h

r
u

s
t
 C

o
m

m
a

n
d

 (
N

)

Guided

Optimal

A
B

C D

Figure 7. Single feedback trajectory simulation employing the neural-based trajectory shaping

scheme and comparison with a GPOPS open-loop optimal solution. A) Descent trajectory tracking

the optimal velocity field. B) history of the optimal and commanded thrust. C) History of altitude and

downrange. D) History of lateral and descent velocity.

Importantly, the history of position, velocity and thrust have been compared with a newly

generated numerical optimal solution generated via GPOPS that starts with the same initial

conditions as the guided trajectory. Performance are comparable although it is worth noting that

the neural-based trajectory shaping algorithm has not been designed to track the GPOPS-

generated optimal fueld solution, but tracks the velocity field as approximated by the ELM. The

open-loop, fuel efficient numerical solution achieve the desired target position with exactly zero

velocity. The guided trajectory will generate guidance residual errors and it is not expect to have

the same accuray of the open-loop ideal case. The magnitude of the thrust command oscillate as

function of time as reported in Figure 7. This is due to the LQR design that has been chosen for

the specific implementation. Importantly, in the last 10 seconds of the powered descent, the thrust

command is reduced, which is probably the major cause of residual guidance errors. As noted it is

 15

not expected the guidance algorithm track exactly open-loop optimal trajectories. Indeed, as the

lander moves across the vector field, the position associated to the guided trajectory trigger ELM

outputs that approximate optimal velocity vectors associated to different fueld-optimal

trajectories. Figure 8 shows the history of the mass for the guided lander versus the history of the

optimal mass as computed by GPOPS. Interesting, the optimal case has a lower mass which

implies larger amount of propellant. This is due to the fact that mass of propellant has been traded

for accuracy in position and errors in terminal velocity (order of 1 m/sec). The latter implies that

not all lander’s kinetic energy has been taken out by the guidance system. Moreover, during the

guided phase, the lander does not track necessary that specific optimal solution with the same

initial conditions, but other optimal trajectories or a combination of those that exhibit lowe mass

of propellant.

Figure 8: History of the lander’s total mass. Red: neural-based trejatory shaped guidance. Blue:

open-loop optimal

To evaluate further the guidance algorithm performance, a set of 1000 Monte Carlo simulations

have been implemented and terminal guidance error recorded. A set of randomly generated initial

conditions have been generated by randomly perturbing the samples of initial conditions taken

from the training set. Initial altitude and downrange are perturbed by a gaussian noise with zero

mean and 10 meters standard deviation (1σ). Initial lateral and descent velocities are perturbed by

a gaiussian noise with zero mean and 2 m/sec standard deviation (1σ). Table 1 reports the statistic

of the residual guidance error. Figure 9 shows the histogram of the terminal downrange error as

well as terminal lateral and impact velocity. The guidance algorithm is shown to perform well

with 1) a maximum absolute downrange error of 1.27 meters; 2) a maximum lateral velocity error

of 0.9 m/sec; and 3) a maximum impact (descent) velocity of -0.91 m/sec.

Table 1: Landing statistics for the Monte Carlo Simulations

 Mean Standard Deviation

Downrange Error (m) -0.0680 0.7366

Lat Velocity Error (m/sec) 0.4762 0.2226

Imp Velocity Error (m/sec) -0.7319 0.0652

0 5 10 15 20 25 30 35
1700

1750

1800

1850

1900

Time (sec)

L
a
n

d
e
r

T
o

ta
l

M
a

s
s
 (

K
g

)

 16

-1.5 -1 -0.5 0 0.5 1 1.5
0

20

40

60

80

100

120

Range Error (m)

O
c
c

u
r
r
e
n

c
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

Lateral Velocity Error (m)

O
c
c

u
r
r
e
n

c
e

-0.95 -0.9 -0.85 -0.8 -0.75 -0.7 -0.65 -0.6
0

100

200

300

400

500

600

Impact (Descent) Velocity Error (m)

O
c
c

u
r
r
e
n

c
e

Figure 9: Landing histograms for the 1000 Monte Carlo simulations. Top: Error range. Bottom

Left: Lateral velocity error. Bottom Right: Impact (descent) velocity error.

CONCLUSIONS AND FUTURE EFFORTS

This paper presented an approach to feedback guidance for planetary landing that may

represent the next evolution of path shaping algorithms. Conventional path shaping algorithms, as

investigated for lunar descent and landing, have been based on the idea of defining a potential

function that exhibits the typical properties of a Lyapunov function. In previous studies, potential

functions have been selected to be analytical (e.g. quadratic function or any of its linear

combination). Despite the convenience (e.g. vector field and acceleration command can be

computed analytically), the families of trajectories generated in this fashion in generally non-

optimal. The next evolution of trajectory shaping employs modern machine learning techniques

to approximate a potential function as function of position that generates trajectories that are

attractive to the target and fuel efficient. Apparently, what is really needed is an algorithm that

computes the optimal velocity field as function of the spacecraft actual position. Fuel efficient

trajectories and velocities cannot be computed analytically, but numerical computation is required

by using methods borrowed from optimal control theory (e.g. pseudo-spectral methods). ELM

can be designed and trained on the output of open-loop, fuel-efficient trajectories generated via

GPOPS. Such trajectories are shown to be convergent to the target and can be easily generated

off-line. EML have shown to be fast and accurate in learning the desired functional relationship

between the spacecraft position and the optimal velocity field. For real-time implementation, the

guidance algorithm evaluate current position and velocity, compute via ELM the actual desired

velocity and employs a LQR to track the velocity field. Guidance simulations have demonstrated

 17

the ability of the guidance algorithm to drive the lander toward the desired position exhibiting

low residual errors in both terminal downrange, lateral velocity and impact velocity.

Future work needs to be done to implement and evaluate the neural-based trajectory shaping

guidance performance in a full 3-D environment. Importantly, the extension is fairly

straightforward. For example one can use the 2-D SLFN as reference and generate an axial-

symmetric conical optimal vector field, by rotating the current 2-D field around the vertical (z-

axis).

REFERENCES

1A. A. Wolf, J. Tooley, S. Ploen, M. Ivanov, B. Acikmese, K. Gromov, Performance Trades for Mars Pinpoint

Landing, IEEE Aerospace Conference Proceedings, March 2006, IEEE-1661, March 2006.

2 A. Wolf, E. Sklyanskly, J. Tooley, B. Rush, Mars Pinpoint Landing Systems Trades, AAS/AIAA Astrodynamics

Specialist Conference Proceedings, AAS 07-310, August 19-23, 2007

3 R.D. Braun and R.M. Manning, “Mars Exploration Entry, Descent, and Landing Challenges,” Journal of

Spacecraft and Rockets, Vol. 44, No. 2, 310-323, March – April 2007.

4 B. Steinfeldt , M. Grant, D. Matz, and R. Braun, Guidance, Navigation, and Control Technology System Trades

for Mars Pinpoint Landing, AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2008-6216, 2008.

5 D. R., Williams, “Mars Pathfinder Landing Site,” Dec. 2004, http:// nssdc.gsfc.nasa.gov/planetary/marsland.html

[retrieved 26 March 2012].

6 R. Shotwell, Phoenix-the first Mars Scout mission, Acta Astronautica, Volume 57, Issue 2-8, (2005), p. 121-134.

7 P. C., Knocke, G. G., Wawrzyniak, B. M., Kennedy, P. N., Desai, T. J., Parker, M. P., Golombek, T. C.,

Duxbury, and Kass, “Mars Exploration Rovers Landing Dispersion Analysis,” Proceedings of the AIAA/AAS

Astrodynamics Specialist Conference, AIAA Paper 2004- 5093, 2004.

8 D., A., Spencer, D., S., Adams, E., Bonfiglio, M., Golombek, R., Arvidson, K., Seelos, Phoenix Landing Site

Hazard Assessment and Selection, Journal of Spacecraft and Rockets, vol. 46, issue 6, (2009), pp. 1196-1201

9 A. Steltzner, A, Mars Science Laboratory Entry, Descent and Landing System, 2006 IEEE Aerospace Conference,

Paper 1497, Big Sky, Montana, March 2006.

10http://marsoweb.nas.nasa.gov/landingsites/msl/4th_workshop/program.html (Retrieved March 26, 2012)

11 A. D., Steltzner, D. M., Kipp, A., Chen, P. D.,Burkhart, C. S., Guernsey, G. F., Mendeck, R. A., Mitcheltree, R.

W., Powell, T. P., Rivellini, A. M., San Martin, D. W., Way, Mars Science Laboratory Entry, Descent, and Landing

System, IEEE Aerospace Conference Paper No. 2006-1497, Big Sky, MT,(2006)

12 R. Furfaro, J., M. Dohm, W. Fink, J. S. Kargel, D. Schulze-MakuchA. G. Fairén, P. T. Ferré, A. Palmero-

Rodriguez, V. R. Baker, T., M., Hare, M. A. Tarbell, H. H. Miyamoto, G. Komatsu, The Search for Life Beyond Earth

Through Fuzzy Expert Systems; Planetary and Space Science, (2008) Volume 56, Issues 3-4, 448-472.

13 G. Wells, et al., Entry, Descent, and Landing Challenges of Human Mars Exploration, 29th AAS Guidance and

Control Conference, AAS 06-072, Breckenridge, Colorado, February 2006.

14 K.-Y., Tu, M. S., Munir, K. D., Mease, and D. S., Bayard, Drag-Based Predictive Tracking Guidance for Mars

Precision Landing, Journal of Guidance, Control, and Dynamics, Vol. 23, No. 4, 2000, pp. 620–628.

15 U., Topcu, J., Casoliva, and K., Mease, Fuel Efficient Powered Descent Guidance for Mars Landing, AIAA

Paper 2005-6286, 2005.

16 R., Sostaric, and J., Rea, Powered Descent Guidance Methods for the Moon and Mars, AIAA Paper 2005-6287,

2005.

17 F., Najson, and K., Mease, A Computationally Non-Expensive Guidance Algorithm for Fuel Efficient Soft

Landing, AIAA Guidance, Navigation, and Control Conference, San Francisco, AIAAPaper 2005-6289, 2005.

18 C. D’Souza, An Optimal Guidance Law for Planetary Landing, AIAA Guidance, Navigation, and Control

Conference, AIAA Paper 1997-3709, 1997.

http://marsoweb.nas.nasa.gov/landingsites/msl/4th_workshop/program.html

 18

19 B., Acikmese, and S. R., Ploen, Convex Programming Approach to Powered Descent Guidance for Mars

Landing, Journal of Guidance, Control, and Dynamics, Vol. 30, No. 5, 2007, pp. 1353–1366.

20 D. A., Benson, G. T., Huntington, T. P., Thorvaldsen, and A. V., Rao, Direct trajectory optimization and costate

estimation via an orthogonal collocation method. Journal of Guidance, Control, and Dynamics, 29(6), 2006, 1435-

1440.

21 J. F., Sturm, Using SeDuMi 1.02, a MATLAB Toolbox for Optimization Over Symmetric Cones, Optimization

Methods and Software, Vol. 11, No. 1, 1999, pp. 625–653.

22B. Acıkmese and L. Blackmore. Lossless convexification of a class of optimal control problems with non-convex

control constraints. Automatica, 47(2), 2011.

23 Y., Nesterov, and A., Nemirovsky, Interior-Point Polynomial Methods in Convex Programming, SIAM,

Philadelphia, PA, 1994.

24 L. Blackmore, B. Acıkmese, and D. P Scharf. Minimum landing error powered descent guidance for Mars

landing using convex optimization. AIAA Journal of Guidance, Control and Dynamics, 33(4):1161–1171, 2010.

25 A. R., Klumpp, A Manually Retargeted Automatic Landing System for the Lunar Module (LM), Journal of

Spacecraft and Rockets, Volume 5, Issue 2, 1968, pp 129-138.

26 A. R., Klumpp, Apollo Guidance, Navigation, and Control: Apollo Lunar-Descent Guidance, Massachusetts Inst.

of Technology, Charles Stark Draper Lab., TR R-695, Cambridge, MA, June 1971.

27A. R., Klumpp, Apollo Lunar Descent Guidance, Automatica, Volume 10, Issue 2, 1974, pp. 133-146.

28 G. Singh, A. SanMartin, and E. Wong. Guidance and control design for powered descent and landing on Mars.

Aereospace Conference IEEE, 2007.

29McInnes, Colin R. "Path shaping guidance for terminal lunar descent." Acta Astronautica 36.7 (1995): 367-377.

30Mcinnes, Colin R. "Potential function methods for autonomous spacecraft guidance and control." Astrodynamics

1995: Proceedings of the AAS/AIAA Astrodynamics Conference, Halifax, Canada. 1996.

31 Huang, Guang-Bin, Dian Hui Wang, and Yuan Lan. "Extreme learning machines: a survey." International

Journal of Machine Learning and Cybernetics 2.2 (2011): 107-122.

32Hagan, Martin T., Howard B. Demuth, and Mark H. Beale. Neural network design. Boston: Pws Pub., 1996.

33Huang, Guang-Bin, Qin-Yu Zhu, and Chee-Kheong Siew. "Extreme learning machine: theory and applications."

Neurocomputing 70.1 (2006): 489-501.

34Bartlett, Peter L. "The sample complexity of pattern classification with neural networks: the size of the weights is

more important than the size of the network." Information Theory, IEEE Transactions on 44.2 (1998): 525-536.

35Huang, Guang-Bin, Lei Chen, and Chee-Kheong Siew. "Universal approximation using incremental constructive

feedforward networks with random hidden nodes." Neural Networks, IEEE Transactions on 17.4 (2006): 879-892.

36Huang, Guang-Bin, Lei Chen, and Chee-Kheong Siew. "Universal approximation using incremental constructive

feedforward networks with random hidden nodes." Neural Networks, IEEE Transactions on 17.4 (2006): 879-892.

37A. V., Rao, D. A., Benson, C., Darby, M. A., Patterson, C., Francolin, I., Sanders, et al. Algorithm 902: GPOPS, a

MATLAB software for solving multiple phase optimal control problems using the Gauss pseudospectral method. ACM

Transactions on Mathematical Software, 37(2), 2010, 22:1-22:39.

	neural-based trajectory shaping approach for terminal planetary Pinpoint guidance

