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Abstract

To avoid finding the stationary distributions of stochastic differential equations

by solving the nontrivial Kolmogorov-Fokker-Planck equations, the numerical

stationary distributions are used as the approximations instead. This paper is

devoted to approximate the stationary distribution of the underlying equation

by the Backward Euler-Maruyama method. Currently existing results [21, 31,

33] are extended in this paper to cover larger range of nonlinear SDEs when the

linear growth condition on the drift coefficient is violated.

Keywords: the backward Euler-Maruyama method, nonlinear SDEs,

numerical stationary distribution, weak convergence

1. Introduction

Stochastic differential equations (SDEs) have been widely used in modelling

uncertain phenomena in many areas [18, 25]. However, due to the difficulty

to find general explicit solutions to non-linear SDEs, numerical approximations

have been attracting a lot of attention in recent decades [16, 24]. One aspect of

the numerical analyses for SDEs focuses on asymptotic properties of approxima-

tions, among which the asymptotic stability particularly has been interesting to

many researchers. There are different types of stabilities, and the almost sure
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stability and the moment stability are the two that have been discussed a lot.

We mention some of the works [2, 3, 4, 6, 13, 11, 19, 26, 30] and the references

therein. Briefly, those two stabilities are defined by that for any given initial

value the solution will decay to the trivial solution (in the sense of moment or

almost surely) as time tends to infinity.

However, those stabilities mentioned above sometimes are too strong. In

some cases, the solution will not decay to the trivial solution but oscillate as

time advances. In this situation, the underlying solution may have a stationary

distribution. Stationary distribution of SDEs has many modelling applications,

for example in the dynamic of species population [22] and in epidemiology [5].

One way to find the stationary distribution is by solving the Kolmogorov-Fokker-

Planck equation. But this is nontrivial. Another way is to approximate it using

the stationary distribution obtained from some numerical solution. To follow

this approach, one first needs to show the existence and uniqueness of the sta-

tionary distribution for the numerical solution. Then the numerical stationary

distribution needs to be shown to converge to the underlying one.

The second author’s series papers [21, 33, 31] are devoted to numerical sta-

tionary distributions of stochastic differential equations. In those series papers,

the explicit Euler–Maruyama (EM) method was used due to the simple struc-

ture and moderate computational cost [8]. However, the explicit EM method

has its own restriction, as mentioned in [14], it may not converge to the true

solution of the super-linear-coefficient SDEs even in finite time. Therefore, both

the drift coefficient and the diffusion coefficient were required to be global Lip-

schitz in the series papers. Those restrictions exclude many highly non-linear

models, for example [1, 5, 7] and the references therein.

In this paper, we propose the Backward Euler-Maruyama (BEM) method

as the approximation. The BEM method, which is a drift implicit scheme, has

been broadly investigated and shown better at dealing with the highly non-linear

SDEs in both finite time convergence problems and asymptotic problems. We

mention some works [9, 10, 11, 12, 19, 26, 28] here and the references therein.

In this paper, we are going to investigate the existence and uniqueness of the
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numerical stationary distribution of the BEM method and the convergence of it

to the underlying stationary distribution. One of our key contributions is that

we release the global Lipschitz condition on the drift coefficient by assuming

the one-sided Lipschitz condition instead, but we still require the global Lips-

chitz condition on the diffusion coefficient. And this restriction is due to the

techniques employed in the proofs in Section 3, in which the diffusion coefficient

needs to be bounded by some linear term. We mention that some papers on

the finite time convergence discussed certain type of SDE models with the non-

global Lipschitz diffusion coefficient [28]. Therefore, one of the open problems

is that can we use some other methods to approximate the stationary distribu-

tions of some classes of SDE models without the global Lipschitz on the diffusion

coefficient?

This paper is constructed as follows. We first brief the method, definitions,

conditions on the SDEs as well as other mathematical preliminaries in Section 2.

Then, we propose the coefficients related sufficient conditions for the existence

and uniqueness of the numerical stationary distribution in Section 3.1. Under

the same conditions, the stationary distribution of the underlying solution is

presented in Section 3.2. The convergence of the numerical stationary distri-

bution is proved in Section 3.3. In Section 4, we demonstrate the theoretical

results by some numerical simulations. We conclude this paper and discuss some

future research in Section 5.

2. Mathematical Preliminaries

Throughout this paper, let (Ω,F ,P) be a complete probability space with a

filtration {Ft}t≥0 satisfying the usual conditions (that is, it is right continuous

and increasing while F0 contains all P-null sets). Let | · | denote the Euclidean

norm in Rd. The transpose of a vector or matrix, M , is denoted by MT and

the trace norm of a matrix, M , is denoted by |M | =
√

trace(MTM). If M

is a square matrix, the smallest and largest eigenvalues of M are denoted by

λmin(M) and λmax(M), respectively.
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Let f, g : Rd → Rd. To keep symbols simple, let B(t) be a scalar Brow-

nian motion. The results in this paper can be extended to the case of multi-

dimensional Brownian motions. We consider the d-dimensional stochastic dif-

ferential equation of Itô type

dx(t) = f(x(t))dt+ g(x(t))dB(t) (2.1)

with initial value x(0) = x0.

We first assume that the drift coefficient satisfies the local Lipschitz condition

and the diffusion coefficient satisfies the global Lipschitz condition.

Condition 2.1. For any h > 0, there exists a constant Ch > 0 such that

|f(x)− f(y)|2 ≤ Ch|x− y|2,

for any x, y ∈ Rd with max(|x|, |y|) ≤ h.

Condition 2.2. There exists a constant K̄2 > 0 such that

|g(x)− g(y)|2 ≤ K̄2|x− y|2,

for any x, y ∈ Rd.

We further impose the following condition on the drift coefficient.

Condition 2.3. Assume there exist a symmetric positive-definite matrix Q ∈
Rd×d and a constant K̄1 ∈ R such that

(x− y)TQ(f(x)− f(y)) ≤ K̄1(x− y)TQ(x− y),

for any x, y ∈ Rd.

From Condition 2.2 and 2.3, it is easy to see that for any x ∈ Rd

xTQf(x) ≤ K1x
TQx+ α1, (2.2)

and

|g(x)|2 ≤ K2|x|2 + α2, (2.3)

with K2, α1, α2 > 0 and K1 ∈ R.
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2.1. The Backward Euler-Maruyama Method

The backward Euler-Maruyama method (BEM), also called the semi-implicit

Euler method, to SDE (2.1) is defined by

Xk+1 = Xk + f(Xk+1)∆t+ g(Xk)∆Bk, X0 = x(0) = x0, (2.4)

where ∆Bk = B(tk+1)− B(tk) is a Brownian motion increment and tk = k∆t.

We refer to [16, 24] for more details in numerical methods for SDEs.

Lemma 2.4. Let Conditions 2.1, 2.2, 2.3 hold and ∆t < 0.5|K̄1|−1, the BEM
solution (2.4) is well defined.

Many papers have discussed the existence and uniqueness of the BEM solution

(2.4), we therefore refer to [19, 20] for the proof of the lemma above. From now

on, we always assume ∆t < 0.5|K̄1|−1.

It is useful to write (2.4) as

Xk+1 − f(Xk+1)∆t = Xk + g(Xk)∆Bk.

Define a function G : Rd → Rd by G(x) = x− f(x)∆t. Then G has its inverse

function G−1 : Rd → Rd. Moreover, the BEM (2.4) can be represented as

Xk+1 = G−1(Xk + g(Xk)∆Bk). (2.5)

Lemma 2.5. Let Conditions 2.1, 2.2 and 2.3 hold, then

P(Xk+1 ∈ B
∣∣Xk = x) = P(X1 ∈ B

∣∣X0 = x)

for any Borel set B ⊂ Rd.

Proof. If Xk = x and X0 = x, by (2.4) we see

Xk+1 − f(Xk+1)∆t = x+ g(x)∆Bk,

and

X1 − f(X1)∆t = x+ g(x)∆B0.

Because ∆Bk and ∆B0 are identical in probability law, comparing the two

equations above, we know that Xk+1 − f(Xk+1) and X1 − f(X1)∆t have the

identical probability law. Then, due to Lemma 2.4, we have that Xk+1 and

X1 are identical in probability law under Xk = x and X0 = x. Therefore, the

assertion holds.
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To prove Theorem 2.7, we cite the following classical result (see, for example,

Lemma 9.2 on page 87 of [18]).

Lemma 2.6. Let h(x, ω) be a scalar bounded measurable random function of x,
independent of Fs. Let ζ be an Fs-measurable random variable. Then

E(h(ζ, ω)
∣∣Fs) = H(ζ),

where H(x) = Eh(x, ω).

For any x ∈ Rd and any Borel set B ⊂ Rd, define

P(x,B) := P(X1 ∈ B
∣∣X0 = x) and Pk(x,B) := P(Xk ∈ B

∣∣X0 = x).

Theorem 2.7. The BEM solution (2.4) is a homogeneous Markov process with
transition probability kernel P(x,B).

Proof. The homogeneous property follows Lemma 2.5, so we only need to show

the Markov property. Define

Y xk+1 = G−1(x+ g(x)∆Bk),

for x ∈ Rd and k ≥ 0. By (2.5) we know that Xk+1 = Y Xk

k+1. Let Gtk+1
=

σ{B(tk+1) − B(tk)}. Clearly, Gtk+1
is independent of Ftk . Moreover, Y xk+1 de-

pends completely on the increment B(tk+1) − B(tk), so is Gtk+1
-measurable.

Hence, Y xk+1 is independent of Ftk . Applying Lemma 2.6 with h(x, ω) =

IB(Y xk+1), we compute that

P(Xk+1 ∈ B
∣∣Ftk) = E(IB(Xk+1)

∣∣Ftk) = E
(
IB(Y Xk

k+1)
∣∣Ftk) = E

(
IB(Y xk+1)

) ∣∣
x=Xk

= P(x,B)
∣∣
x=Xk

= P(Xk, B) = P(Xk+1 ∈ B
∣∣Xk).

The proof is complete.

Therefore, we see that P(·, ·) is the one-step transition probability and Pk(·, ·)

is the k-step transition probability, both of which are induced by the BEM

solution.

We state a simple version of the discrete-type Gronwall inequality in the

next Lemma (see, for example, [17]).
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Lemma 2.8. Let {un} and {wn} be nonnegative sequences and α be a nonneg-
ative constant. If

un ≤ α+

n−1∑
k=0

ukwk for n ≥ 0,

then

un ≤ α exp

(
n−1∑
k=0

wk

)
.

2.2. Stationary Distributions

Denote the family of all probability measures on Rd by P(Rd). Define by L

the family of mappings F : Rd → R satisfying

|F (x)− F (y)| ≤ |x− y| and |F (x)| ≤ 1,

for any x, y ∈ Rd. For P1,P2 ∈ P(Rd), define metric dL by

dL(P1,P2) = sup
F∈L

∣∣∣∣∫
Rd

F (x)P1(dx)−
∫
Rd

F (x)P2(dx)

∣∣∣∣ .
The weak convergence of probability measures can be illustrated in terms of

metric dL [15]. That is, a sequence of probability measures {Pk}k≥1 in P(Rd)

converge weakly to a probability measure P ∈ P(Rd) if and only if

lim
k→∞

dL(Pk,P) = 0.

Then we define the stationary distribution for {Xk}k≥0 by using the concept of

weak convergence.

Definition 2.9. For any initial value x ∈ Rd and a given step size ∆t > 0,
{Xk}k≥0 is said to have a stationary distribution Π∆t ∈ P(Rd) if the k-step
transition probability measure Pk(x, ·) converges weakly to Π∆t(·) as k →∞ for
every x ∈ Rd, that is

lim
k→∞

(
sup
F∈L
|E(F (Xk))− EΠ∆t(F )|

)
= 0,

where

EΠ∆t
(F ) =

∫
Rd

F (y)Π∆t(dy).
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In [31], the authors provided the following three assumptions and proved that

under those assumptions the Euler–Maruyama solution of the stochastic dif-

ferential equation has a unique stationary distribution. We observe that the

three assumptions are very general and actually can cover many other types of

one-step numerical methods including the BEM method. This is because that,

in their proofs (Theorem 3.1 in [31]), only the three assumptions were required

but not the structure of the numerical method. Therefore, for any one-step

numerical solution that is a homogeneous Markov process with a proper transi-

tion probability kernel and satisfies the three assumptions, Theorem 3.1 in [31]

always holds. To keep the paper self contained, we state the assumptions and

the theorem as follows.

Assumption 2.10. For any ε > 0 and x0 ∈ Rd, there exists a constant R =
R(ε, x0) > 0 such that

P(|Xx0

k | ≥ R) < ε, for any k ≥ 0.

Assumption 2.11. For any ε > 0 and any compact subset K of Rd, there
exists a positive integer k∗ = k∗(ε,K) such that

P(|Xx0

k −X
y0

k | < ε) ≥ 1− ε, for any k ≥ k∗ and any (x0, y0) ∈ K ×K.

Assumption 2.12. For any ε > 0, n ≥ 1 and any compact subset K of Rd,
there exists a R = R(ε, n,K) > 0 such that

P
(

sup
0≤k≤n

|Xx0

k | ≤ R
)
> 1− ε, for any x0 ∈ K.

Theorem 2.13. Under Assumptions 2.10, 2.11 and 2.12, the BEM solution
{Xk}k≥0 has a unique stationary distribution Π∆t.

We refer the readers to Theorem 3.1 in [31] for the proof.

However, those three assumptions are not easy to check as they are not directly

related to the drift and diffusion coefficients of the underlying SDEs. In the next

section, we will provide some coefficient-related sufficient conditions for those

assumptions. It should be noted that those sufficient conditions are method

related, which makes them more constraint.
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3. Main Results

This section is divided into three parts. In the first subsection, we propose

three lemmas that are sufficient conditions for Assumption 2.10, 2.11 and 2.12.

Then by Theorem 2.13, we see that the BEM solution has a unique stationary

distribution. In the second subsection, we prove that given the same conditions

in the three lemmas the underlying solution has a unique stationary distribution

as well. The last subsection is devoted to the convergence of the numerical

stationary distribution to the underlying stationary distribution.

3.1. Sufficient Conditions for the Numerical Stationary Distribution

Many works have discussed the second moment boundedness of the BEM

solution in finite time, we only mention a few of them here [16, 20] and references

therein. It should be emphasized that, comparing with techniques employed in

Lemma 3.1, weaker conditions and more complicated techniques have already

been developed in the existing literature. But those weaker conditions may not

be sufficient for other lemmas in this paper. To keep the conditions consistent in

this paper and to make the paper self-contained, we brief the following lemma.

Without confusion, in some of the proofs we omit the superscript and simply

denote Xx0

k by Xk.

Lemma 3.1. Given Conditions 2.1, 2.2 and 2.3, the second moment of the
BEM solution (2.4) obeys

E
(

sup
0≤k≤n+1

|Xk|2
)
≤ q

(
|x0|2 + C1(n+ 1)

(
2α1∆t+ α2∆t+ 2

√
2α2∆t/π

))
× exp

(
q(n+ 1)C1

(
1 +K2∆t+ 2(

√
K2 +

√
α2)
√

2∆t/π
))

for any integer n ≥ 1, where C1 = (1− 2|K1|∆t)−1 and q = λmax(Q)/λmin(Q).

Proof. Fix any initial value X(0) = x0 ∈ Rd, from (2.4) we see that

XT
k+1QXk+1 = XT

k+1Q(Xk + g(Xk)∆Bk) +XT
k+1Qf(Xk+1)∆t.

Since Q is a symmetric positive-definite matrix, by the Cholesky decomposition

there exists a unique lower triangular matrix L such that Q = LLT . Then by
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the elementary inequality and (2.2) we have

XT
k+1QXk+1 ≤

1

2
|XT

k+1L|2 +
1

2
|LT (Xk + g(Xk)∆Bk)|2 + (K1X

T
k+1QXk+1 + α1)∆t

≤ 1

2
XT
k+1QXk+1 +

1

2
[XT

k QXk + gT (Xk)Qg(Xk)|∆Bk|2 + 2XT
k Qg(Xk)∆Bk]

+ (K1X
T
k+1QXk+1 + α1)∆t.

This implies

XT
k+1QXk+1 ≤ C1(XT

k QXk+gT (Xk)Qg(Xk)|∆Bk|2+2XT
k Qg(Xk)∆Bk)+2C1α1∆t,

where C1 = (1− 2|K1|∆t)−1. Taking sum on both sides gives

XT
k+1QXk+1 ≤ XT

0 QX0 + (C1 − 1)

k∑
i=0

(XT
i QXi) + 2α1C1(k + 1)∆t

+ C1

k∑
i=0

(2XT
i Qg(Xi)∆Bi + gT (Xi)Qg(Xi)|∆Bi|2). (3.1)

It is not difficult to show that

E

(
sup

0≤k≤n

(
k∑
i=0

gT (Xi)Qg(Xi)|∆Bi|2
))
≤ ∆tλmax(Q)

n∑
i=0

E(K2|Xi|2 + α2),

and

E

(
sup

0≤k≤n

(
k∑
i=0

XT
i Qg(Xi)∆Bi

))
≤ λmax(Q)E

(
n∑
i=0

|Xi||g(Xi)||∆Bi|

)

≤ λmax(Q)(
√
K2 +

√
α2)
√

2∆t/π

n∑
i=0

E(|Xi|2) + λmax(Q)
√

2α2∆t/π(n+ 1),

where E|∆Bi| =
√

2∆t/π is used. Therefore, taking supremum and expectation

on both sides of (3.1) yields

E
(

sup
0≤k≤n+1

|Xk|2
)
≤ λmax(Q)

λmin(Q)

(
|x0|2 + C1(n+ 1)

(
2α1∆t+ α2∆t+ 2

√
2α2∆t/π

)
+ C1

(
1 +K2∆t+ 2(

√
K2 +

√
α2)
√

2∆t/π
) n∑
i=0

E
(

sup
0≤k≤i

|Xk|2
))

.

Then, using the discrete-type Gronwall inequality stated in Lemma 2.8 we see

the assertion holds.

10



From Lemma 3.1, by the Chebyshev inequality we can conclude that Assumption

2.12 holds under Conditions 2.1, 2.2 and 2.3.

Lemma 3.2. Let (2.2) and (2.3) hold. If, for the same Q in (2.2), there exists
a positive constant D such that for any x ∈ Rd

gT (x)Qg(x)

D + xTQx
− 2|xTQg(x)|2

(D + xTQx)2
≤ K3 +

P3(|x|)
(D + xTQx)2

(3.2)

where K3 is a constant with K1 + 0.5K3 < 0 and P3(|x|) is a polynomial of |x|
with degree 3, then there exists a pair of constants (p∗,∆t∗) with p∗ ∈ (0, 1) and
∆t∗ ∈ (0, 0.5|K1|−1) such that for any p ∈ (0, p∗) and any ∆t ∈ (0,∆t∗) the
BEM solution (2.4) has the property that for any k ≥ 1

E|Xk|p ≤ q(Dp/2 + |X0|p − 2C ′3(p(K1 + 0.5K3))−1)

where q = λmax(Q)/λmin(Q), and C ′3 depends on K1, α1, D, Q and p.

Proof. Set C1 = (1− 2K1∆t)−1, from the proof of Lemma 3.1 we have that

DC1 +XT
k+1QXk+1

≤ DC1 + C1(XT
k QXk + 2XT

k Qg(Xk)∆Bk + gT (Xk)Qg(Xk)|∆Bk|2 + 2α1∆t)

≤ C1(D +XT
k QXk)(1 + ζk),

where ζk = (D+XT
k QXk)−1(2XT

k Qg(Xk)∆Bk+gT (Xk)Qg(Xk)|∆Bk|2+2α1∆t).

Clearly ζk > −1. For any p ∈ (0, 1), thanks to the fundamental inequality that

(1 + u)p/2 ≤ 1 +
p

2
u+

p(p− 2)

8
u2 +

p(p− 2)(p− 4)

23 × 3!
u3, u > −1, (3.3)

we see that

E((D +XT
k+1QXk+1)p/2

∣∣Fk∆t)

≤ Cp/21 (D +XT
k QXk)p/2E

(
1 +

p

2
ζk +

p(p− 2)

8
ζ2
k +

p(p− 2)(p− 4)

23 × 3!
ζ3
k |Fk∆t

)
.

(3.4)
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Since ∆Bk is independent of Fk∆t, we have that E(∆Bk
∣∣Fk∆t) = E(∆Bk) = 0

and E(|∆Bk|2
∣∣Fk∆t) = E(|∆Bk|2) = ∆t. Then

E(ζk
∣∣Fk∆t)

= E
(
(D +XT

k QXk)−1(2XT
k Qg(Xk)∆Bk + gT (Xk)Qg(Xk)|∆Bk|2 + 2α1∆t)

∣∣Fk∆t

)
= (D +XT

k QXk)−1(2XT
k Qg(Xk)E(∆Bk

∣∣Fk∆t) + gT (Xk)Qg(Xk)E(|∆Bk|2
∣∣Fk∆t)

+ 2α1∆t)

= (D +XT
k QXk)−1(gT (Xk)Qg(Xk)∆t+ 2α1∆t). (3.5)

Using the facts that E(|∆Bk|2i) = (2i−1)!!∆ti and E((∆Bk)2i+1) = 0, similarly

we get that

E(ζ2
k

∣∣Fk∆t) = (D +XT
k QXk)−2(4|XT

k Qg(Xk)|2∆t+ 3|gT (Xk)Qg(Xk)|2∆t2 + 4α2
1∆t2

+ 4α1g
T (Xk)Qg(Xk)∆t2)

≥ (D +XT
k QXk)−2(4|XT

k Qg(Xk)|2∆t), (3.6)

and

E(ζ3
k

∣∣Fk∆t) = (D +XT
k QXk)−3(15|gT (Xk)Qg(Xk)|3∆t3 + 12α2

1g
T (Xk)Qg(Xk)∆t3

+ 8α3
1∆t3 + 24α1|XT

k Qg(Xk)|2∆t2 + 18α1|gT (Xk)Qg(Xk)|2∆t3

+ 36|XT
k Qg(Xk)|2gT (Xk)Qg(Xk)∆t2)

≤ C2∆t2, (3.7)

where C2 is a constant dependent on K2, α1, α2, λmax(Q), λmin(Q) and D.

Substituting (3.5), (3.6) and (3.7) back to (3.4) yields

E((D +XT
k+1QXk+1)p/2

∣∣Fk∆t)

≤ Cp/21 (D +XT
k QXk)p/2E

(
1 +

p

2

(
gT (Xk)Qg(Xk)

D +XT
k QXk

− 2|XT
k Qg(Xk)|2

(D +XT
k QXk)2

)
∆t

+
p2

2

|XT
k Qg(Xk)|2

(D +XT
k QXk)2

∆t+
p(p− 2)(p− 4)

23 × 3!
C2∆t2

)
+ C3∆t

where C3 depends on K1, α1, D, λmin(Q) and λmax(Q). Considering the fraction

(D +XT
k QXk)p/2P3(|Xk|)

(D +XT
k QXk)2

,
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for 0 < p < 1 the highest degree of |Xk| in the numerator is p + 3, which

is smaller than the highest degree of |Xk| in the denominator. Thus, for any

|Xk| ∈ R there exists a positive constant upper bound for the fraction. By (3.2),

we have

E((D +XT
k+1QXk+1)p/2

∣∣Fk∆t)

≤ Cp/21 (D +XT
k QXk)p/2(1 +

p

2
K3∆t+

p2

2
K2q∆t+ C ′2∆t2) + C ′3∆t

where C ′2 depends on C2 and p, and C ′3 depends on C3 and p. Taking expectation

on both sides, we have

E((D +XT
k+1QXk+1)p/2)

≤ Cp/21 (1 +
p

2
K3∆t+

p2

2
K2q∆t+ C ′2∆t2)E((D +XT

k QXk)p/2) + C ′3∆t.

(3.8)

Set ε = 0.5|K1 + 0.5K3|, choose p∗ sufficiently small such that p∗K2q ≤ 0.5ε,

then choose ∆t∗ sufficiently small such that for p ∈ (0, p∗) and ∆t ∈ (0,∆t∗)

we have

C1 = (1− 2K1∆t)−1 ≥ 1− pK1∆t− C4∆t2 > 0, (3.9)

where C4 is a positive constant dependent on K1 and p. By further reducing

∆t∗ such that for any ∆t ∈ (0,∆t∗)

C ′2∆t <
1

8
pε, C4∆t <

1

4
ε, |p(K1 +

1

4
)∆t| < 1

2
.

Now using these three inequalities and (3.9), we derive from (3.8) that

E((D+XT
k+1QXk+1)p/2) ≤ 1 + 0.5p(K3 + 0.5ε)∆t

1− p(K1 + 0.25ε)∆t
E((D+XT

k QXk)p/2)+C ′3∆t.

(3.10)

Considering the estimate that for any κ ∈ [−0.5, 0.5]

(1− κ)−1 = 1 + κ+ κ2
∞∑
i=0

κi ≤ 1 + κ+ κ2
∞∑
i=0

0.5i = 1 + κ+ 2κ2,

by further reducing ∆t∗ we see that for ∆t ∈ (0,∆t)

4p(K1 +
1

4
ε)2∆t+ (K3 +

1

2
ε)(p(K1 +

1

4
ε)∆t+ 2(p(K1 +

1

4
ε)∆t)2) < ε.

13



Then (3.10) indicates that

E((D +XT
k+1QXk+1)p/2) ≤ (1 + 0.5p(K3 + 0.5ε)∆t)(1 + p(K1 + 0.25ε)∆t

+ 2(p(K1 + 0.25ε)∆t)2)E((D +XT
k QXk)p/2) + C ′3∆t

≤ (1 + p(K1 + 0.5K3 + ε)∆t)E((D +XT
k QXk)p/2) + C ′3∆t.

By iteration, we obtain that

E((D +XT
k+1QXk+1)p/2) ≤ (1 + p(K1 + 0.5K3 + ε)∆t)k+1(D +XT

0 QX0)p/2

+
1− (1 + p(K1 + 0.5K3 + ε)∆t)k+1

1− (1 + p(K1 + 0.5K3 + ε)∆t)
C ′3∆t.

Since (1 + p(K1 + 0.5K3 + ε)∆t) ∈ (0, 1) for any p ∈ (0, p∗) and ∆t ∈ (0,∆t∗),

we see that

E((D +XT
k+1QXk+1)p/2) ≤ (D +XT

0 QX0)p/2 − 2(p(K1 + 0.5K3))−1C ′3.

Because Q is a symmetric positive-definite matrix, the assertion holds.

From Lemma 3.2, we can conclude that Assumption 2.10 holds for sufficiently

small ∆t.

Now we are investigating the sufficient condition for Assumption 2.11. The

techniques used in the proof of Lemma 3.3 are similar to those in Lemma 3.2.

Lemma 3.3. Let Conditions 2.1, 2.2 and 2.3 hold. Assume that, for the same
Q in (2.3),

(g(x)− g(y))TQ(g(x)− g(y))

(x− y)TQ(x− y)
−2|(x− y)TQ(g(x)− g(y))|2

|(x− y)TQ(x− y)|2
≤ K4, ∀x, y ∈ Rd with x 6= y,

(3.11)
where K4 is constant with K̄1 + 0.5K4 < 0. Then for any two different initial
values x, y ∈ Rd, the BEM solution (2.4) has the property that for any k ≥ 1
there are sufficiently small ∆t∗ and p∗ such that for any pair of ∆t and p with
∆t ∈ (0,∆t∗) and p ∈ (0, p∗)

E(|Xx
k −X

y
k |
p) ≤ q(1 + 0.5p(K̄1 + 0.5K4)∆t)kE(|x− y|p),

where q = λmax(Q)/λmin(Q). Therefore, Assumption 2.11 follows.

Proof. From (2.4) we have

Xx
k+1 −X

y
k+1 = Xx

k −X
y
k + (f(Xx

k+1)− f(Xy
k+1))∆t+ (g(Xx

k )− g(Xy
k ))∆Bk.

14



Then, in the similar manner as the proof of Lemma 3.1, we see that

(Xx
k+1 −X

y
k+1)TQ(Xx

k+1 −X
y
k+1)

≤ (1− 2K̄1∆t)−1((Xx
k −X

y
k )TQ(Xx

k −X
y
k ) + 2(Xx

k −X
y
k )TQ(g(Xx

k )− g(Xy
k ))∆Bk

+ (g(Xx
k )− g(Xy

k ))TQ(g(Xx
k )− g(Xy

k ))|∆Bk|2).

Set

ηk =
2(Xx

k −X
y
k )TQ(g(Xx

k )− g(Xy
k ))∆Bk + (g(Xx

k )− g(Xy
k ))TQ(g(Xx

k )− g(Xy
k ))|∆Bk|2

(Xx
k −X

y
k )TQ(Xx

k −X
y
k )

we can have

(Xx
k+1 −X

y
k+1)TQ(Xx

k+1 −X
y
k+1) ≤

(Xx
k −X

y
k )TQ(Xx

k −X
y
k )

1− 2K̄1∆t
(1 + ηk).

Taking conditional expectation on both sides and using the fundamental in-

equality (3.3), for any p ∈ (0, 1) we have that

E(|(Xx
k+1 −X

y
k+1)TQ(Xx

k+1 −X
y
k+1)|p/2

∣∣Fk∆t)

≤
∣∣∣∣ (Xx

k −X
y
k )TQ(Xx

k −X
y
k )

1− 2K̄1∆t

∣∣∣∣p/2 E(1 +
p

2
ηk +

p(p− 2)

8
η2
k +

p(p− 2)(p− 4)

23 × 3!
η3
k|Fk∆t

)
.

(3.12)

It is not difficult to show that

E(ηk
∣∣Fk∆t) =

(g(Xx
k )− g(Xy

k ))TQ(g(Xx
k )− g(Xy

k ))

(Xx
k −X

y
k )TQ(Xx

k −X
y
k )

∆t,

E(η2
k

∣∣Fk∆t) ≥
4|(Xx

k −X
y
k )TQ(g(Xx

k )− g(Xy
k ))|2

|(Xx
k −X

y
k )TQ(Xx

k −X
y
k )|2

∆t,

and

E(η3
k

∣∣Fk∆t) ≤ C5∆t2,

where C5 depends on K2, λmin(Q) and λmax(Q). Together with (3.11) we derive

from (3.12) that

E(|(Xx
k+1 −X

y
k+1)TQ(Xx

k+1 −X
y
k+1)|p/2

∣∣Fk∆t)

≤
∣∣∣∣ (Xx

k −X
y
k )TQ(Xx

k −X
y
k )

1− 2K̄1∆t

∣∣∣∣p/2(1 +
p

2

(g(Xx
k )− g(Xy

k ))TQ(g(Xx
k )− g(Xy

k ))

(Xx
k −X

y
k )TQ(Xx

k −X
y
k )

∆t

+
p(p− 2)

8

4|(Xx
k −X

y
k )TQ(g(Xx

k )− g(Xy
k ))|2

|(Xx
k −X

y
k )TQ(Xx

k −X
y
k )|2

∆t+
p(p− 2)(p− 4)

23 × 3!
C5∆t2

)
≤
∣∣∣∣ (Xx

k −X
y
k )TQ(Xx

k −X
y
k )

1− 2K̄1∆t

∣∣∣∣p/2(1 +
p

2
K4∆t+

p2

2
K̄2q∆t+

p(p− 2)(p− 4)

23 × 3!
C5∆t2

)
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In the same way as in the proof of Lemma 3.2, we can choose sufficiently small

∆t∗ and p∗ such that for any p ∈ (0, p∗) and ∆t ∈ (0,∆t∗)

E(|(Xx
k+1 −X

y
k+1)TQ(Xx

k+1 −X
y
k+1)|p/2)

≤ (1 + 0.5p(K̄1 + 0.5K4)∆t)E(|(Xx
k −X

y
k )TQ(Xx

k −X
y
k )|p/2).

Therefore, by iteration and the fact that Q is a symmetric positive-definite

matrix we show the assertion.

Therefore, given the conditions in Lemma 3.1, 3.2 and 3.3, from Theorem

2.13 we conclude that there exists a unique stationary distribution for the BEM

solution as time tends to infinity.

3.2. The Underlying Stationary Distribution

The existence and uniqueness of the stationary distribution for the underly-

ing solution is discussed in this part under the same conditions as the previous

subsection. We emphasize that Theorem 3.1 in [32] is key to this part.

Lemma 3.4. Assume Conditions 2.1, 2.2 and 2.3 hold, the second moment of
the solution of (2.1) satisfies

E
(

sup
0≤t≤T1

|x(t)|2
)
≤ (1 + E|x0|2) exp(2T ×max(K1λmax(Q) +K2, α1 + α2)),

for any T1 > 0.

We refer the readers to Theorem 2.4.1 in [18] for the proof.

Lemma 3.5. Assume the conditions in Lemma 3.2 hold, there exists a constant
p∗ ∈ (0, 1) such that for any p ∈ (0, p∗)

E|x(t)|p ≤ q(c1t+ E|x0|p +Dp/2) exp

(
p

[
K1 +

1

2
K3 +

p

2
K2q

]
t

)
<∞,

holds for any t > 0, where q = λmax(Q)/λmin(Q) and c1 is a positive constant
dependent on p, K1, K2, α1, α2, D, λmin(Q) and λmax(Q).
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Proof. For p ∈ (0, 1), from the Itô formula,

d|xT (t)Qx(t) +D|p/2

= [p|xT (t)Qx(t) +D|p/2−1(xT (t)Qf(x(t))) + p(
p

2
− 1)|xT (t)Qx(t) +D|p/2−2|xT (t)Qg(x(t))|2

+
p

2
|xT (t)Qx(t) +D|p/2−1(gT (x(t))Qg(x(t)))]dt

+ p|xT (t)Qx(t) +D|p/2−1(xT (t)Qg(x(t)))dB(t)

= p|xT (t)Qx(t) +D|p/2
[
xT (t)Qf(x(t))

xT (t)Qx(t) +D
+

1
2g
T (x(t))Qg(x(t))

xT (t)Qx(t) +D
− |xT (t)Qg(x(t))|2

|xT (t)Qx(t) +D|2

+
p

2

|xT (t)Qg(x(t))|2

|xT (t)Qx(t) +D|2

]
dt+ p|xT (t)Qx(t) +D|p/2−1(xT (t)Qg(x(t)))dB(t).

Under (2.2), (2.3) and (3.2) it implies

d|xT (t)Qx(t) +D|p/2 ≤ p|xT (t)Qx(t) +D|p/2
[
K1 +

1

2
K3 +

p

2
K2q

]
dt+ c1dt

+ p|xT (t)Qx(t) +D|p/2−1(xT (t)Qg(x(t)))dB(t),

where c1 is a positive constant dependent on p, K1, K2, α1, α2, D, λmin(Q)

and λmax(Q). Since K1 + 0.5K3 < 0, given ε ∈ (0, |K1 + 0.5K3|) we may choose

p∗ ∈ (0, 1) so small that 0.5p∗K2q < ε, then for any p ∈ (0, p∗) we see that

E|xT (t)Qx(t) +D|p/2 ≤ p
[
K1 +

1

2
K3 +

p

2
K2q

] ∫ t

0

E|xT (s)Qx(s) +D|p/2ds

+ c1t+ E|xT0 Qx0 +D|p/2.

By Gronwall’s inequality, we see that

E|xT (t)Qx(t)+D|p/2 ≤ (c1t+E|xT0 Qx0+D|p/2) exp

(
p

[
K1 +

1

2
K3 +

p

2
K2q

]
t

)
.

Although the time variable, t, appears in both the coefficient of the exponentia-

tion term and the exponent, the choice of the p and the fact that K1+0.5K3 < 0

guarantee that exponentiation term decreases as t increases. Thus, the term on

the right hand side of the inequality above has an upper bound.

Lemma 3.6. Assume the conditions in Lemma 3.3 hold, for any two different
initial values x0, y0 ∈ Rd, there exists a constant p∗ ∈ (0, 1) such that for any
p ∈ (0, p∗)

E|xx0(t)− xy0(t))|p ≤ qE|(x0 − y0)|p exp(p(K̄1 + 0.5K4 + 0.5pK̄2q)t),

where q = λmax(Q)/λmin(Q).
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Proof. For p ∈ (0, 1), from the Itô formula,

d|(xx0(t)− xy0(t))TQ(xx0(t)− xy0(t))|p/2

= [p|(xx0(t)− xy0(t))TQ(xx0(t)− xy0(t))|p/2−1(xx0(t)− xy0(t))TQ(f(xx0(t))− f(xy0(t)))

+ p(
p

2
− 1)|(xx0(t)− xy0(t))TQ(xx0(t)− xy0(t))|p/2−2|(xx0(t)− xy0(t))TQ(g(xx0(t))− g(xy0(t)))|2

+
p

2
|(xx0(t)− xy0(t))TQ(xx0(t)− xy0(t))|p/2−1(g(xx0(t))− g(xy0(t)))TQ(g(xx0(t))− g(xy0(t)))]dt

+ p|(xx0(t)− xy0(t))TQ(xx0(t)− xy0(t))|p/2−1(xx0(t)− xy0(t))TQ(g(xx0(t))− g(xy0(t)))dB(t)

= p|(xx0(t)− xy0(t))TQ(xx0(t)− xy0(t))|p/2
(

(xx0(t)− xy0(t))TQ(f(xx0(t))− f(xy0(t)))

(xx0(t)− xy0(t))TQ(xx0(t)− xy0(t))

+
(g(xx0(t))− g(xy0(t)))TQ(g(xx0(t))− g(xy0(t)))

2(xx0(t)− xy0(t))TQ(xx0(t)− xy0(t))
− |(x

x0(t)− xy0(t))TQ(g(xx0(t))− g(xy0(t)))|2

|(xx0(t)− xy0(t))TQ(xx0(t)− xy0(t))|2

+
p

2

|(xx0(t)− xy0(t))TQ(g(xx0(t))− g(xy0(t)))|2

|(xx0(t)− xy0(t))TQ(xx0(t)− xy0(t))|2

)
dt

+ p|(xx0(t)− xy0(t))TQ(xx0(t)− xy0(t))|p/2−1(xx0(t)− xy0(t))TQ(g(xx0(t))− g(xy0(t)))dB(t).

Under Condition 2.2, 2.3 and (3.11) this implies

d|(xx0(t)− xy0(t))TQ(xx0(t)− xy0(t))|p/2

≤ p|(xx0(t)− xy0(t))TQ(xx0(t)− xy0(t))|p/2
(
K̄1 + 0.5K4 + 0.5pK̄2q

)
dt

+ p|(xx0(t)− xy0(t))TQ(xx0(t)− xy0(t))|p/2−1(xx0(t)− xy0(t))TQ(g(xx0(t))− g(xy0(t)))dB(t).

Since K̄1 + 0.5K4 < 0, given ε ∈ (0, |K̄1 + 0.5K4|) we may choose p∗ ∈ (0, 1) so

small that 0.5pK̄2q < ε, then for any p ∈ (0, p∗) we have that

E|(xx0(t)− xy0(t))TQ(xx0(t)− xy0(t))|p/2

≤ E|(x0 − y0)TQ(x0 − y0)|p/2

+ p(K̄1 + 0.5K4 + 0.5pK̄2q)

∫ t

0

E|(xx0(s)− xy0(s))TQ(xx0(s)− xy0(s))|p/2ds.

Then Gronwall’s inequality indicates that

E|(xx0(t)− xy0(t))TQ(xx0(t)− xy0(t))|p/2

≤ E|(x0 − y0)TQ(x0 − y0)|p/2 exp(p(K̄1 + 0.5K4 + 0.5pK̄2q)t).

As Q is a symmetric positive-definite matrix, the proof is complete.
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We conclude this part by the following theorem.

Theorem 3.7. Given the conditions in Lemma 3.1, 3.2 and 3.3, the solution
of (2.1) has a unique stationary distribution denoted by π(·).

Having Lemma 3.4, 3.5 and 3.6, the proof of this theorem follows from Theorem

3.1 in [32].

3.3. The Convergence

Given Conditions 2.1, 2.2, 2.3 and those conditions assumed in Lemma 3.1,

3.2, 3.3, the convergence of the numerical stationary distribution to the under-

lying stationary distribution is discussed in this subsection.

Recall that the probability measure induced by the numerical solution, Xk,

is denoted by Pk(·, ·), similarly we denote the probability measure induced by

the underlying solution,x(t), by P̄t(·, ·).

Lemma 3.8. Let Conditions 2.1, 2.2, 2.3 hold and fix any initial value x0 ∈ Rd.
Then, for any given T1 > 0 and ε > 0 there exists a sufficiently small ∆t∗ > 0
such that

dL(P̄k∆t(x0, ·),Pk(x0, ·)) < ε

provided that ∆t < ∆t∗ and k∆t ≤ T1.

The result can be derived from the fact that the BEM solution converges strongly

to the underlying solution in finite time [10, 12, 16].

Now we are ready to show that the numerical stationary distribution con-

verges to the underlying stationary distribution as time step diminishes.

Theorem 3.9. Given Conditions 2.1, 2.2, 2.3, (3.2) and (3.11),

lim
∆t→0

dL(Π∆t(·), π(·)) = 0.

Proof. Fix any initial value x0 ∈ Rd and set ε > 0 to be an arbitrary real

number. According to Theorem 3.7, there exists a Θ∗ > 0 such that for any

t > Θ∗

dL(P̄t(x0, ·), π(·)) < ε/3.

Similarly, by Theorem 2.13, there exists a pair of ∆t∗∗ > 0 and Θ∗∗ > 0 such

that

dL(Pk(x0, ·),Π∆t(·)) < ε/3
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for all ∆t < ∆t∗∗ and k∆t > Θ∗∗. Let Θ = max(Θ∗,Θ∗∗), from Lemma 3.8

there exists a ∆t∗ such that for any ∆t < ∆t∗ and k∆t < Θ + 1

dL(P̄k∆t(x0, ·),Pk(x0, ·)) < ε/3.

Therefore, for any ∆t < min(∆t∗,∆t∗∗), set k = [Θ/∆t] + 1/∆t, we see the

assertion holds by the triangle inequality.

4. Examples

In this section, we illustrate the theoretical results by three examples. First,

we consider a two-dimensional SDE with scalar Brownian motion.

Example 4.1.

dx(t) = (diag(x1(t), x2(t))b+ diag(x1(t), x2(t))Adiag(x1(t), x2(t))x(t) + c1) dt

+ (diag(x1(t), x2(t))σ + c2) dB(t), (4.1)

where x(t) = (x1(t), x2(t))T , diag(x1(t), x2(t)) denotes a diagonal matrix with
non-zero entries x1(t) and x2(t) on the diagonal, b = (1, 1)T , A = (aij)i,j=1,2

with a1,1 = −1, a1,2 = −0.7, a2,1 = −1.2, a2,2 = −2, c1 = (0.5, 0.7)T , c2 =
(3.5, 4)T and σ = (3.5, 4)T .

Choosing Q to be an identity matrix, it is clear that the drift and diffusion

coefficients of (4.1) satisfy Conditions 2.1, 2.2, 2.3 and (2.2) with K̄1 = 1 and

K1 = 1.7, which indicate that Lemma 3.1 holds. To check conditions for Lemma

3.2, we see that

(3.5x1 + 0.3)2 + (4x2 + 0.2)2

D + (x2
1 + x2

2)
− 2|3.5x2

1 + 0.3x1 + 4x2
2 + 0.2x2|2

(D + (x2
1 + x2

2))2
.

Set D = 0.04/25, we can derive that (3.2) is satisfied with K3 = −7 and

K1 + 0.5K3 < 0, then Lemma 3.2 holds. Finally, we have that (3.11) is satisfied

with K4 = −7 and K̄1 + 0.5K4 < 0, that is Lemma 3.3 holds.

We simulate 1000 paths, each of which has 10000 iterations. In Figure 1,

we plot one path of the BEM solution for x1(t) and x2(t). Intuitively, some

stationary behaviour displays.

We further plot the empirical cumulative distribution function (ECDF) of the

last iterations of the 1000 paths and the ECDF of last 1000 iterations of one
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Figure 1: Left: the BEM solution to x1(t); Right: the BEM solution to x2(t).

path in Figure 2. It can be seen that the shapes and the intervals of the ECDFs

are similar. To measure the similarity quantitatively, we use the Kolmogorov-

Smirnov test (K-S test) [23] to test the alternative hypothesis that the last

iterations of the 1000 paths and last 1000 iterations of one path are from different

distributions against the null hypothesis that they are from the same distribution

for both x1(t) and x2(t). With 5% significance level, the K-S test indicates that

we cannot reject the null hypothesis. This example illustrates the existence of

the stationary distribution as the time variable becomes large. Moreover, it

may indicate that instead of simulating many paths to construct the stationary

distribution, one could just use the last few iterations of one path to approximate

the stationary distribution.

To compare the numerical stationary distribution with the theoretical one, we

next consider a nonlinear scalar SDE, whose stationary distribution can be

explicitly derived from the Kolmogorov-Fokker-Planck equation.

Example 4.2.
dx(t) = −0.5(x+ x3)dt+ dB(t).

It is straightforward to see that K̄1 = K1 = −0.5 and K3 = K4 = 0, hence

all the conditions required in Section 2 and 3 are satisfied. The correspond-

ing Kolmogorov-Fokker-Planck equation for the theoretical probability density
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Figure 2: Left: ECDFs for x1; Right: ECDFs for x2. The red dashed line is last 1000 iterations

of one path; The blue solid line is last iterations of the 1000 paths.

function of the stationary distribution p(x) is

0.5
d2p(x)

dx2
− d

dx
(−0.5(x+ x3)p(x)) = 0.

And the exact solution is known to be [27]

p(x) =
1

I 1
4
( 1

8 ) + I− 1
4
( 1

8 )
exp(

1

8
− 1

2
x2 − 1

4
x4),

where Iν(x) is a modified Bessel function of the first kind. We simulate one path

with 100000 iterations and plot the ECDF of last 20000 iterations in red dashed

line in Figure 3. The theoretical cumulative distribution function is plotted on

the same figure in blue solid line. The similarity of those two distribution is

clear seen, which indicates that the numerical stationary distribution is a good

approximation to the theoretical one. The mean and variance of the numerical

stationary distribution are 0 and 0.453, respectively, which are close to the

theoretical counterparts 0 and 0.466.

This example also demonstrates that the numerical method for stochastic

differential equations can serve as an alternative way to approximate determin-

istic differential equations.
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Figure 3: Comparison of the ECDF with the theoretical cumulative distribution function

At last, we consider a linear scalar equation, the Langevin equation [29]. The

comparison of the BEM method in this paper with the EM method studied in

[33] demonstrates that the BEM has less constraint on the step size.

Example 4.3. We write the Itô type equation of the Langevin equation as

dx(t) = −αx(t)dt+ σdB(t) on t ≥ 0, (4.2)

where α > 0 and σ ∈ R.

From (2.4), given the initial value X0 = x(0) ∈ R we have

Xk+1 = Xk +−αXk+1∆t+ σ∆Bk.

This gives that Xk+1 is normally distributed with mean

E(Xk+1) = (1 + α∆t)−(k+1)x(0)
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and variance

V ar(Xk+1) = (1 + α∆t)−2V ar(Xk) + σ2(1 + α∆t)−2∆t

= σ2∆t[(1 + α∆t)−2 + (1 + α∆t)−4 + ...+ (1 + α∆t)−2(k+1)]

= σ2∆t
1− (1 + α∆t)−(k+1)

(1 + α∆t)2 − 1

=
σ2

2α+ α2∆t
.

So the distribution of the BEM solution approaches the normal distribution

N(0, σ2/(2α+α2∆t)) as k →∞ for any ∆t > 0. Recall, from Example 3.5.1 in

[18], that the underlying solution of (4.2) approaches its stationary distribution

N(0, σ2/(2α)) as t → ∞, then it is interesting to observe that N(0, σ2/(2α +

α2∆t)) will further converge to stationary distribution of the true solution as

∆t→ 0.

5. Conclusions and Future Research

This paper extends the results in second author’s series paper [21, 33, 31].

By using the Backward Euler-Maruyama method, the linear growth condition

on the drift coefficient is replaced by the one-sided Lipschitz condition and the

stationary distribution of many more SDEs can be approximated by the numer-

ical stationary distribution. However, it should be mentioned that, compared to

the three assumptions in Section 2, those sufficient conditions in Section 3.1 are

still stronger. And this is because those assumptions are in probability, while

those sufficient conditions are in terms of moment. Therefore, it is interesting to

construct some coefficient-related sufficient conditions which are in probability.

And this may be achieved by using different Lyapunov functions other than the

one V (x) = (D + xTQx)p/2 employed in this paper.

Another interesting future work is to investigate the convergence rates of the

distributions of different types of numerical methods. Furthermore, it may be

interesting to conduct some numerical analyses about approximating determin-

istic differential equations by the numerical stationary distributions of SDEs.
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