Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Computational prediction of out-of-plane welding distortion and experimental investigation - Awarded Central Electricity Generating Board Prize

Camilleri, D. and Comlekci, T. and Gray, T.G.F. (2005) Computational prediction of out-of-plane welding distortion and experimental investigation - Awarded Central Electricity Generating Board Prize. Journal of Strain Analysis for Engineering Design, 40 (2). pp. 161-176. ISSN 0309-3247

Full text not available in this repository.Request a copy from the Strathclyde author


The main aim of the work was to investigate a simplified finite element simulation of the out-of-plane distortion caused by fusion butt welding. The thermal transient part of the simulation made use of a finite element analysis of the two-dimensional cross-section of the weld joint and the thermoelastic-plastic treatment was based on analytical algorithms describing transverse and longitudinal deformations, leading to predictions of transverse angular deformation and longitudinal contraction force. These results were then applied to a non-linear elastic finite element model to provide predictions of the final angular and overall deformations of the butt-welded plates. The validity of the simulation was investigated via full-scale tests on 4m x 1.4m x 5 mm steel plates, butt welded using a flux-cored Ar-CO2 metal-inert gas process. Thermography and thermocouple arrays were used to validate the thermal transient computations and out-of-plane deformations were measured using displacement transducers for transient deformations and a laser scanning system to measure the profiles of the whole plates before and after welding. The results of six full-scale tests are given and comparison with the simulations shows that the procedure provides good prediction of the angular and overall out-of-plane deformations. Prediction accuracy requires account to be taken of initial shape, gravity loading, and support conditions.