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Abstract
A graph G = (V,E) is representable if there exists a word W over

the alphabet V such that letters x and y alternate in W if and only if
(x, y) ∈ E for each x 6= y. If W is k-uniform (each letter of W occurs
exactly k times in it) then G is called k-representable. Examples of
non-representable graphs are found in this paper. Some wide classes of
graphs are proven to be 2- and 3-representable. Several open problems
are stated.
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1 Introduction

To the nodes of a graph G we assign distinct letters from some alphabet.
G is representable if there exists a word W such that any two letters, say x
and y, alternate in W if and only if G contains an edge between the nodes
corresponding to x and y. In such a situation we say that W represents G.

Representable (in our sense) graphs are considered in [1] to obtain as-
ymptotic bounds on the free spectrum of the widely-studied Perkins semi-
group, B1

2, which has played central role in semigroup theory since 1960,
particularly as a source of examples and counterexamples. Recall that the
Perkins semigroup has the elements

(
0 0
0 0

)
,

(
1 0
0 1

)
,

(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
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and the operation is usual matrix-multiplication. A word W over the al-
phabet Xn = {x1, . . . , xn} induces a function fW : (B1

2)n → B1
2 as follows:

for (a1, . . . , an) ∈ (B1
2)n, let fW (a1, . . . , an) be the evaluation of W after

substituting ai wherever xi occurs for 1 ≤ i ≤ n. Given n, how many dis-
tinct functions can be represented by words in the alphabet Xn? We refer
to [3] for a related problem as well as for some references in the subject. It
turns out ([1]) that the last question is equivalent to finding the number of
representable graphs on n nodes.

Our studies are mainly motivated by the fact that it is unknown how
many graphs can be represented, and for some graphs known to be rep-
resentable, explicit constructions of “words-representants” are missing. In
this paper our ultimate goal is not counting or improving asymptotics for
representable graphs, but rather enlarging the set of known classes of rep-
resentable graphs by providing explicit constructions of words represent-
ing them, which is often a challenging combinatorics on words problem.
Our results give the structure of words-representants in many cases. Some-
times, we even study different ways to represent a graph: we deal with
k-representations — the multiplicity of each letter must be k in the words.
We believe that our results could be useful in considering the general prob-
lem (the classifying all the graphs by the property “to be representable”),
which in turn would improve a lower bound for the number of representable
functions for the Perkins semigroup.

The approach in [1] is not the first instance when combinatorics on words
is used to solve an algebraic problem. A classical example is the following
Burnside-type problem: The element z is a zero element of a semigroup S
with an associative operation ·, if z · a = a · z = z for all a in S; Let S be
a semigroup generated by three elements, such that the square of every ele-
ment in S is zero (thus a·a = z for all a in S). Does S have an infinite number
of elements? This question was answered in affirmative independently by
Thue (1906), by Arshon (1937), and by Morse (1938). All of the solutions
used combinatorics on words approaches based on the morphism-type con-
structions of infinite square-free sequences. To find out more on applications
of combinatorics on words methods for solving problems arising in algebra,
theoretical computer science, dynamical system, number theory and other
areas we refer to [2]. So, beyond applications to the problem on the Perkins
semigroup, our paper has independent interest from a pure combinatorics
on words point of view in form of constructions we use to represent graphs.

The paper is organized as follows. In Section 2 we give formal definitions
and state some general properties of representable graphs. In Section 3 ex-
amples of non-representable graphs are presented. In Section 4 the class of
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2-representable graphs is studied. In particular, it is proved that all outer-
planar graphs are 2-representable. In Section 5 we prove that 3-subdivision
of every graph is 3-representable (hence, every graph can be a minor of a
3-representable graph). Section 6 is devoted to some open problems.

2 Preliminaries

In this section we give formal definitions of studied objects and make some
simple observations on their properties.

Let W be a finite word over an alphabet {x1, x2, . . .}. If W involves the
variables x1, x2, . . . , xn then we write V ar(W ) = {x1, . . . , xn}. Let X be
a subset of V ar(W ). Then W \X is the word obtained by eliminating all
variables in X from W . A word is k-uniform if each letter appears in it
exactly k times. A 1-uniform word is also called a permutation. Denote by
W1W2 the concatenation of the words W1 and W2. We say that the letters
xi and xj alternate in W if a subword induced by these two letters contains
neither xixi nor xjxj as a factor. If a word W contains k copies of a letter x

then we denote these k appearances of x by x1, x2, . . . , xk. We write xj
i < xl

k

if xj
i stays in W before xl

k, i. e. xj
i is to the left of xl

k in W .
Let G = (V, E) be a graph with the vertex set V and the edge set E.

We say that a word W represents the graph G if there is a bijection φ :
V ar(W ) → V such that (φ(xi), φ(xj)) ∈ E if and only if xi and xj alternate
in W . It is convenient to identify the vertices of a representable graph
and the corresponding letters of a word representing it. We call a graph G
representable if there exists a word W that represents G. We denote the set
of all words representing G by R(G). If G can be represented by a k-uniform
word, then we say that G is k-representable and Rk(G) denotes the set of
all k-uniform words that represent G. Clearly, the complete graphs are the
only examples of 1-representable graphs. So, in what follows we assume that
k ≥ 2.

Observation 1. If W ∈ R(G) then its reverse W−1 (the word W written
in reverse order) also represents G, that is, W−1 ∈ R(G).

If W represents G and X ⊂ V ar(W ) then clearly W \X represents G\X
— the subgraph of G induced by the vertices from V (G) \ X. So, we can
make the following

Observation 2. The class of (k-)representable graphs is hereditary, i. e., if
G is (k-)representable then all its induced subgraphs are (k-)representable.
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The next observation follows directly from the definition of representable
graphs, but it helps much to verify whether a given word represents a desired
graph or not.

Observation 3. Let W = W1x
iW2x

i+1W3 be a word representing G where
xi and xi+1 are two consecutive occurrences of a letter x in W . Let X be
the set of all letters that appear only once in W2. Then the vertex x is
not adjacent to V ar(W ) \X in G, i. e., all possible candidates for x to be
adjacent to in G are in X.

Suppose P (W ) is the permutation obtained by removing all but the
leftmost occurrences of a letter x in W for each x ∈ V ar(W ). We call P (W )
the initial permutation of W .

Observation 4. Let W ∈ R(G) and P (W ) be its initial permutation. Then
P (W )W ∈ R(G). In particular, for every k > l, an l-representable graph is
also k-representable.

Note that Observation 4 shows that any word W that represents a
graph G can always be extended to the left to a word representing G. It is
clear how to use the same idea to make an extension of W to the right to
a word representing G (one basically needs to replace “leftmost” by “right-
most” in the definition of the initial permutation).

It follows from Observations 2 and 4 that a graph G ∪H (G and H are
two connected components of the graph) is representable if and only if G
and H are representable (just take concatenation of a word in R(G) and a
word in R(H) both having at least two occurrences of each letter). So, we
may consider only connected graphs.

Now let us prove some properties of k-representable graphs.

Proposition 5. Let W = AB be a k-uniform word representing a graph G,
that is, W ∈ Rk(G). Then the word W ′ = BA also k-represents G.

Proof. The claim follows from the fact that under a cyclic shift of B in W ,
the subword xyxy . . . xy can be transformed either to the same subword or
to the subword yxyx . . . yx, and no other subword consisting of k copies of
x and y can be transformed to these subwords. In other words, x and y
alternate in W if and only if they alternate in W ′.

Proposition 6. Let W1 and W2 be k-uniform words (k ≥ 2) representing
graphs G1 = (V1, E1) and G2 = (V2, E2) respectively. Suppose that x ∈ V1

and y ∈ V2. Let H1 be the graph (V1 ∪ V2, E1 ∪ E2 ∪ {(x, y)}). Also denote
by H2 the graph obtained from G1 and G2 by identifying x and y into a new
vertex z. Then both H1 and H2 are k-representable.
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Proof. By Proposition 5, we may assume that W1 = A1x
1A2x

2 . . . Akx
k and

W2 = y1B1y
2B2 . . . ykBk where A1A2 . . . Ak = W1 \ {x} and B1B2 . . . Bk =

W2 \ {y}. Then the words

W3 = A1x
1A2y

1x2B1A3 . . . yk−2xk−1Bk−2Aky
k−1xkBk−1y

kBk

and
W4 = A1z

1A2B1z
2A3B2z

3 . . . AkBk−1z
kBk

represent H1 and H2 respectively. We will prove it for W3 only, since the
proof for W4 is analogous (and somewhat easier).

Clearly, x and y alternate in W3, so, they are adjacent in H1. Note,
that W3 \ V ar(W2) = W1 and W3 \ V ar(W1) = W2. So, the graph induced
by V ar(Wi) is isomorphic to Gi for i = 1, 2 and it is enough to show that
there are no edges between them except for (x, y). Let a ∈ V1, b ∈ V2, and
{a, b} 6= {x, y}, say, a 6= x. Since W1 is k-uniform, there are k occurrences
of a in W1. Then among k − 1 subsets A1 ∪ A2, A3, A4, . . . , Ak there exists
one containing at least two copies of a. Hence, the subword induced by a
and b contains aa as a factor, and (a, b) 6∈ E(H1).

3 Non-representable graphs

Are there any non-representable graphs? In this section we give the positive
answer to this question.

We call a graph permutationally representable if it can be represented by
a word of the form P1P2 . . . Pk where all Pi are permutations. In particu-
lar, all permutationally representable graphs are k-representable for some k.
Such graphs were studied in [1] where the following statement was proved:

Lemma 7. A graph is permutationally representable if and only if at least
one of its possible orientations is a comparability graph of a poset. In par-
ticular, all bipartite graphs are permutationally representable.

The following lemma provides a relation between permutationally rep-
resentable and representable graphs.

Lemma 8. Let x ∈ V (G) be a vertex of degree n−1 in G where n = |V |. Let
H = G \ {x}. Then G is representable if and only if H is permutationally
representable.
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Proof. If H can be represented by a word W = P1P2 . . . Pk where all Pi are
permutations then the word P1x

1P2x
2 . . . Pkx

k clearly represents G.
Suppose that G is representable by a word W ′ = P ′

0x
1P ′

1x
2P ′

2 . . . P ′
k−1x

kP ′
k.

By Observation 4 we may assume that k ≥ 2. By Observation 3, each
P ′

i for i = 1, 2, . . . , k − 1 must be a permutation. Moreover, both P ′
0

and P ′
k contains each letter at most once. The word W ′′ = W ′ \ {x} =

P ′
0P

′
1P

′
2 . . . P ′

k−1P
′
k represents H. Let P ′′

0 = P ′
1 \ V ar(P ′

0) and P ′′
k = P ′

k−1 \
V ar(P ′

k). Then P0 = P ′′
0 P ′

0 and Pk = P ′′
k P ′

k are permutations, and the word
P ′′

0 W ′′P ′′
k = P0P

′
1P

′
2 . . . P ′

k−1Pk also represents H. So, H is permutationally
representable.

Lemmas 7 and 8 give us the method to construct non-representable
graphs. We may take a graph having no orientation which is a comparabil-
ity graph of a poset (the smallest one is C5), and add an all-adjacent vertex
to it. In particular, all odd wheels W2t+1 for t ≥ 2 are non-representable
graphs. Some examples of small non-representable graphs can be found in
Fig. 1.

c c cc ccc c

cc c

cc c
cc c

cc c
cc cc

c
c c
A
A ¡

¡
¡
¡

¡
¡

Fig. 1. Small non-representable graphs

For a vertex x ∈ V (G) denote by N(x) the set of all its neighbors. By
Observation 2 and Lemma 8, we have the following

Theorem 9. If G is representable then for every x ∈ V (G) the graph
induced by N(x) is permutationally representable.

Unfortunately, we have no examples of non-representable graphs, that
does not satisfy the conditions of Theorem 9.

In the next two sections we present some methods to construct repre-
sentable graphs.

4 2-representable graphs

A nice property of 2-representable graphs is that the necessary condition
of Observation 3 is sufficient for them. This means that a vertex x of a
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2-representable graph is adjacent to those and only those vertices, whose
letters appear exactly once between x1 and x2 in the word W (G).

A graph G is outerplanar if it can be drawn at the plane in such a
way that no two edges meet in a point other than a common vertex and
all the vertices lie in the outer face. Since all wheels are planar, there
are planar non-representable graphs. However, all outerplanar graphs are
2-representable. We prove even a bit stronger result.

Theorem 10. If a graph G is outerplanar then it is 2-representable. More-
over, if G is also 2-connected then it can be represented by such a word W
that every edge (x, y) of the outer face appears as a factor (xy or yx) in W
and these factors do not overlap for different edges of the outer face.

Proof. We prove the theorem by induction on n, the number of vertices. For
n = 1, the statement holds, since the only node, say x, gives the word xx
representing a graph without edges.

If G has cut-vertices then we apply induction to its blocks and then
connect them together using the technique of Proposition 6. Thus, it is
enough to prove the second part of the theorem, i. e., the case when G is a
2-connected outerplanar graph.

Let x1x2 . . . xn be the outer face of G. If G has no chords, that is, G is
a cycle, then it is easy to check by Observation 3 that the 2-uniform word

W = x2x1x3x2x4x3 . . . xnxn−1x1xn

represents G and satisfies the second condition of the theorem. In particular,
n = 3 provides the induction basis for the second part of the theorem.

Suppose now that G has a chord (xi, xj) where i < j − 1. Consider
two outerplanar 2-connected graphs G1 and G2 with the outer faces x1x2 . . .
xixjxj+1 . . . xn and xixi+1 . . . xj respectively. By induction, both of them are
2-representable. Moreover, using the induction hypothesis for second condi-
tion of the theorem, Proposition 5 and, if necessary, Observation 1, we can
assume that the words representing G1 and G2 have form W (G1) = W1xixj

and W (G2) = xixjW2. Moreover, these words contain non-overlapping fac-
tors for all of the edges of the outer faces. But then the word W = W1W2

represents G and satisfies the second condition of the theorem.

Note, that the class of 2-representable graphs is wider than the class of
the outerplanar graphs. For example, graphs Kn and K2,n are 2-representable
for every n. However there are graphs that are representable, but not 2-
representable.
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h h
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Fig. 2. Representable but not 2-representable graph

x1 x2

x3

x5

x7

x4

x6

x8

Proposition 11. The graph G in Fig. 2 is not 2-representable.

Proof. Suppose that G is 2-representable. By Proposition 5, we may assume
that a word representing G starts with x1

1. Then x1
1 < x1

i < x2
1 < x2

i for
i = 3, 5, 7. Since the vertices x3, x5, and x7 are mutually non-adjacent, we
may assume that x1

3 < x1
5 < x1

7 < x2
1 < x2

7 < x2
5 < x2

3. Now consider two
cases.

1) Letter x2 occurs twice between x1
5 and x2

5. Since x4 is adjacent to
x2, one copy of the letter x4 must be between x1

2 and x2
2. Then it is also

between x1
5 and x2

5, and since (x4, x5) 6∈ E the second copy of x4 also must
be between x1

5 and x2
5. But then x4 is not adjacent to x3, a contradiction.

2) Letter x2 does not appear between x1
5 and x2

5. Then one copy of the
letter x8 must be between x1

2 and x2
2, and another — between x1

7 and x2
7

(since x8 is adjacent to both x2 and x7). But then x8 and x5 alternate in
the word, that is, x8 is adjacent to x5, a contradiction.

We will show in the next section that the graph in Fig. 2 is 3-representable.

5 3-representable graphs

Our main tool for constructing 3-representable graphs is the following

Lemma 12. Let G be a 3-representable graph and x, y ∈ V (G). Denote
by H the graph obtained from G by adding to it a path of length at least 3
connecting x and y. Then H is also 3-representable.

Proof. By Proposition 6 we can always add a leaf (a vertex of degree 1)
to any place of a graph. Therefore, it is enough to prove the lemma for a
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path of length 3. In this case V (H) = V (G) ∪ {u, v} and E(H) = E(G) ∪
{(x, u), (u, v), (v, y)}. Let W be a 3-uniform word representing G. We may
assume that x1 < y1. Five cases are possible. We consider only one of them
in details, since the proof is similar in all the cases.

1) y2 < x2 and y3 < x3. Then we substitute y2 by v1u1y2v2 and x3

by u2x3v3u3. We get a 3-uniform word W ′. Since W ′ \ {u, v} = W , we
need only to check the neighborhoods of u and v. Clearly, these vertices are
adjacent. By Observation 3, u could also be adjacent only to x and v — only
to y. The edges (u, x) and (v, y) indeed exist because of the corresponding
subwords x1u1x2u2x3u3 and y1v1y2v2y3v3 in W ′.

2) y2 < x2 but x3 < y3. Then we substitute y1 by v1u1y1v2 and x3 by
u2x3v3u3.

3) x2 < y2 < x3. Then we substitute x1 by u1v1x1u2 and y2 by v2y2u3v3.
4) x3 < y2 and x2 < y1. Then we substitute x2 by u1x2v1u2 and y2 by

v2u3y2v3.
5) x3 < y2 but y1 < x2. Then we substitute x2 by u1x2v1u2 and y3 by

v2u3y3v3.

Note that the rightmost example in Fig. 1 shows that it is not possible
to reduce the length of path from 3 to 2 in Lemma 12.

A subdivision of G is a graph obtained from G by substitution of all of
its edges by simple paths. A subdivision is called a k-subdivision if each of
these paths has length at least k. The next theorem follows immediately
from Lemma 12.

Theorem 13. For every graph G there exists a 3-representable graph H
that contains G as a minor. In particular, a 3-subdivision of every graph G
is 3-representable.

Another nice class of 3-representable graphs is the class of prisms (a
prism is a graph consisting of two cycles x1x2 . . . xt and y1y2 . . . yt joined by
the edges (xi, yi), i = 1, 2, . . . , t; in particular, the 3-dimensional cube is a
prism).

Proposition 14. Every prism is 3-representable.

Proof. We start with the following 3-uniform word

W2 = x1x2y1x1y2x2y1y2x1y1x2y2

representing the 4-cycle x1x2y2y1. Note that W2 contains x1
1x

1
2 and y2

1y
2
2 as

factors. Add the path x2x3y3y2 to it using the third rule of Lemma 12 to
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get the 3-uniform word

W3 = x1x3y3x2x3y1x1y2x2y1y3y2x3y3x1y1x2y2

that satisfies the following properties for i = 3:
1) Wi contains x1

1x
1
i and y2

1y
2
i as factors;

2) The subword of Wi induced by x1 and xi is x1
1x

1
i x

2
i x

2
1x

3
i x

3
1, while the

subword induced by y1 and yi has the form y1
i y

1
1y

2
1y

2
i y

3
i y

3
1.

Repeat the operation of adding path xixi+1yi+1yi for i = 3, 4, . . . , t− 1.
Since (xi, yi) ∈ E we may always do it using the third rule of Lemma 12.
It is easy to see that properties 1) and 2) hold for every i. The word Wt

represents a prism without the edges (x1, xt) and (y1, yt). Now substitute
factors x1

1x
1
t and y2

1y
2
t in Wt by x1

t x
1
1 and y2

t y
2
1, respectively. The word

obtained represents the prism. Indeed, due to property 2), (x1, xt) and
(y1, yt) become edges, and all the other adjacencies in the graph are not
changed, since the subwords induced by any other pair of letters remain the
same.

6 Open problems

There are several problems that still remain unsolved.
First of all, we are interested in constructing new examples of non-

representable graphs. Note, that since all bipartite graphs are permuta-
tionally representable, the chromatic number of all examples satisfying the
conditions of Theorem 9 is at least 4.

Problem 1. Are there any non-representable graphs that do not satisfy
the conditions of Theorem 9? In particular, are there any triangle-free or
3-chromatic non-representable graphs?

Most likely, answers to the questions above are positive. A good can-
didate for being a counterexample is the famous Petersen’s graph. It is
3-chromatic, triangle-free and so resistable to all our attempts to represent
it, that we have reasons to formulate the following

Conjecture 1. The Petersen’s graph is non-representable.

Another problem, that may be closely related to Problem 1 is the algo-
rithmic complexity of recognition whether a given graph is representable or
not.

Problem 2. Is it an NP-hard problem to find out whether a graph is rep-
resentable on not?
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In this paper we concentrated mostly on k-representable graphs. We did
not find any example of a graph that is representable but not k-representable
for any k. Therefore, we would like to state

Problem 3. Is it true that if G is representable graph then there is k such
that G is k-representable?

Finally, we remind the main (enumerative) problem from application
point of view:

Problem 4. How many representable graphs on n vertices are there? Can
one provide good lower and/or upper bounds for this number?

Note, however, that almost all graphs are non-representable since almost
all graphs contain the wheel W5 (the leftmost graph in Fig. 1) as an induced
subgraph.
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