Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Equidistribution of descents, adjacent pairs, and place-value pairs on permutations

Deutsch, Emeric and Kitaev, Sergey and Remmel, Jeffrey (2009) Equidistribution of descents, adjacent pairs, and place-value pairs on permutations. Journal of Integer Sequences, 12 (5).

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

An $(X,Y)$-descent in a permutation is a pair of adjacent elements such that the first element is from $X$, the second element is from $Y$, and the first element is greater than the second one. An $(X,Y)$-adjacency in a permutation is a pair of adjacent elements such that the first one is from $X$ and the second one is from $Y$. An $(X,Y)$-place-value pair in a permutation is an element $y$ in position $x$, such that $y$ is in $Y$ and $x$ is in $X$. It turns out, that for certain choices of $X$ and $Y$ some of the three statistics above become equidistributed. Moreover, it is easy to derive the distribution formula for $(X,Y)$-place-value pairs thus providing distribution for other statistics under consideration too. This generalizes some results in the literature. As a result of our considerations, we get combinatorial proofs of several remarkable identities. We also conjecture existence of a bijection between two objects in question preserving a certain statistic.