
This version is available at https://strathprints.strath.ac.uk/49851/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
NEW TECHNOLOGY AND STEEL PRODUCTION
by David N F Bell, University of Stirling, Jeanette Findlay and Christine Oughton, University of Glasgow

1.1 Introduction
This paper is a response to a review of our report Steel Production in Scotland: Strategic Considerations for the 1990's. The report was commissioned by Strathclyde Regional Council at a time when British Steel (BS) was known to be reviewing its long-term strategy for the production of steel plate. Then, as now, BS's plate production was concentrated at two sites, the Dalzell plate mill in Scotland and the Scunthorpe mill in England. It was well known that one of the main strategies under consideration by BS was the 'single plate mill strategy', which as its name suggests, entails concentration of plate production at a single site. Our brief was to examine the economic case for maintaining, and investing in, plate production in Scotland.

Subsequently, a review of our report written by J Love and J Stevens (LS) of Strathclyde University appeared in the Fraser of Allander Institute Quarterly Economic Commentary. The main conclusions of the LS review were as follows.

First, although they agree with many of the main conclusions of our report, they argue that our evidence is insufficient to support these conclusions. In particular, they claim that:

(i) in order to make a case for siting a single plate mill in Scotland, it is first necessary to justify steel production in Scotland;
(ii) that we have explicitly ignored new technological developments which are on the horizon and which will have a significant effect on BS's strategy, and
(iii) that such new technological developments favour the development of mini-mills at Hunterston rather than continued production in Lanarkshire.

This article discusses each of these issues in turn. The following section deals with the charge of 'insufficient evidence'. Section three considers LS's claims about new technology and their suggestion that BS should invest in mini-mills at Hunterston. Section four contains a summary and our main conclusions. Finally, an appendix to this paper lists a number of factual corrections to inaccurate and/or incorrect statements made in the LS review.

2.1 Evidence/Analysis
The most general criticism which LS make of the report is that a number of conclusions are not supported by sufficient evidence or analysis. However, in many of the instances to which they refer they neither disagree with the conclusion in question nor do they suggest in which way the supporting arguments or evidence are deficient. In consequence, it is not always clear precisely what would be required by way of evidence. Since they themselves agree with us on these conclusions, we must assume that LS are aware of stronger evidence and are intending to publish it at some stage. We would welcome such a publication.

One example of this is their review of the section of our report which questioned the recent investment policy of BS. We suggested that it was hard to justify the policy of BS to under-invest in the Scottish plants on economic grounds. LS agreed with our supporting arguments on this issue. However, they argue that 'these points in themselves are not sufficient to justify the above assertion' but they also state that 'there is a case to answer'. They then proceed to explain why it was correct for BS to develop the Port Talbot and Llanwern plants at the expense of Ravenscraig. Their argument can be summarised as follows: after the 'introduction in February 1980 of the EEC's...
The Commission’s 1988 report on the efficiency of the British Steel Corporation found that BSC’s investment programme would be unsustainable. The report stated that “After the Port Talbot investment subsidie s would only be authorised on the basis of a fair appraisal.” However, the decision to upgrade the Welsh plants and reduce capacity elsewhere was not based on a systematic appraisal of investment projects. LS go on to argue that “After the Port Talbot investment subsidie s would only be authorised on the basis of a fair appraisal.”

The authors give no evidence for this assertion and indeed, BS are the only party able to confirm the veracity of this claim. However, they do not accept our refutation of the ‘aging mill’ argument propagated by BS is ‘both cogent and well-directed’ (p. 67). The authors raise a question of uncertainty. Paradoxically, LS argue that ‘the..plate mill decision has not been placed in its proper context” (p 67). The authors go on to say that the ‘plate mill decision has not been placed in its proper context.”

The authors acknowledge that “the..plate mill decision has not been placed in its proper context.” They argue that the cost of upgrading the Dalzell mill compares favourably with other European mills in terms of product range and quality. The authors accept the figures we give for the cost of upgrading the Dalzell mill. They accept that the upgrade at Port Talbot is more expensive than a similar project at Ravenscraig. The authors accept that our report failed to take account of the lowest cost sites, but by how much costs at these sites undercut those elsewhere. None of this is specified in which way this constraint is different from that faced in the alternative sites.

We are therefore unable to address this point. Hence, there is no empirical evidence to support their claim, can be said to be ‘modernise and construct strip finishing and processing facilities in Wales’ and presumably set in motion the dynamic which is now leading to ‘vindicated on the basis of a fair appraisal.’

While such renovation will indeed be necessary at other sites, lackenby or Scunthorpe would be more expensive than a similar project at Ravenscraig. The authors argue that our report failed to take account of the lowest cost sites, but by how much costs at these sites undercut those elsewhere. None of this is specified in which way this constraint is different from that faced in the alternative sites. We are therefore unable to address this point.

The reasoning for this claim is that “While we agree with LS when they specify the nature of the constraints or to specify in which way this constraint is different from that faced in the alternative sites.”

The authors give no evidence for this assertion and indeed, BS are the only party able to confirm the veracity of this claim. However, they do not accept our refutation of the ‘aging mill’ argument propagated by BS is ‘both cogent and well-directed’ (p. 67). The authors raise a question of uncertainty. Paradoxically, LS argue that ‘the..plate mill decision has not been placed in its proper context.”

The authors go on to say that the ‘plate mill decision has not been placed in its proper context.” They argue that the cost of upgrading the Dalzell mill compares favourably with other European mills in terms of product range and quality. The authors accept the figures we give for the cost of upgrading the Dalzell mill. They accept that the upgrade at Port Talbot is more expensive than a similar project at Ravenscraig. The authors accept that our report failed to take account of the lowest cost sites, but by how much costs at these sites undercut those elsewhere. None of this is specified in which way this constraint is different from that faced in the alternative sites. We are therefore unable to address this point.

Hence, there is no empirical evidence to support their claim, can be said to be ‘modernise and construct strip finishing and processing facilities in Wales’ and presumably set in motion the dynamic which is now leading to ‘vindicated on the basis of a fair appraisal.’
fails to demonstrate conclusively that BS will need Ravenscraig's steel output (p. 67). This evidence whatever for this assertion and it is mill at Scunthorpe. They accept our assessment that the costs of refurbishment are less at and Dalzell are closely linked. Thus the argument different steelworks to potential plate-mill.

2.2 Ravenscraig/Dalzell

energy saving is valid - we refer to it in our coastal site. Moreover, the port facilities at point will be dealt with in our response to the second main criticism which LS make of the report, namely, the arguments surrounding new technology. The contentions that our report fails to give a for sitting a single plate-mill in Scotland is partially based on the existence of an adjacent part of the argument for maintaining steel where the future of both Ravenscraig and Dalzell than at Scunthorpe, but they suggest that this is in odds with the fact that Scunthorpe is not a coastal site. Even if such costs were found to be no point in our report have we said this nor did we assume it. It is not implicit in any of our ideas that you must first justify basic steel-making in isolation before any proper comparison of costs between the possible options available is incorrect. On pages 22 to 26 of our report we give a detailed assessment of all options including the costs for each option including the assumption '..invalidly that a supply of slabs from nearby Ravenscraig will be costlessly available from a given capital configuration, a short-term start from a 'clean slate'. Instead, starting to plan and build steel plants, implies that the time required for exploiting economies of scale in shipping are very difficult for an established producer to run a long-run in the steel industry can be a very long time indeed and that investment policies tend to start from the moment around 25% of its output goes to components are also inefficient. Rather, it is our view that the future of both Ravenscraig and Dalzell will be necessarily more costly than the most efficient alternative available. This does not justify the idea that you must first justify basic steel-making in isolation before any proper comparison of costs between the possible options available is incorrect. On pages 22 to 26 of our report we give a detailed assessment of all options including the costs for each option including the assumption '..invalidly that a supply of slabs from nearby Ravenscraig will be costlessly available from a given capital configuration, a short-term start from a 'clean slate'. Instead, starting to plan and build steel plants, implies that the time required for exploiting economies of scale in shipping are very difficult for an established producer to run a long-run in the steel industry can be a very long time indeed and that investment policies tend to start from the moment around 25% of its output goes to components are also inefficient. Rather, it is our view that the future of both Ravenscraig and Dalzell will be necessarily more costly than the most efficient alternative available. This does not justify the idea that you must first justify basic steel-making in isolation before any proper comparison of costs between the possible options available is incorrect. On pages 22 to 26 of our report we give a detailed assessment of all options including the costs for each option including the assumption '..invalidly that a supply of slabs from nearby Ravenscraig will be costlessly available from a given capital configuration, a short-term start from a 'clean slate'. Instead, starting to plan and build steel plants, implies that the time required for exploiting economies of scale in shipping are very difficult for an established producer to run a long-run in the steel industry can be a very long time indeed and that investment policies tend to start from the moment around 25% of its output goes to components are also inefficient. Rather, it is our view that the future of both Ravenscraig and Dalzell will be necessarily more costly than the most efficient alternative available. This does not justify the idea that you must first justify basic steel-making in isolation before any proper comparison of costs between the possible options available is incorrect. On pages 22 to 26 of our report we give a detailed assessment of all options including the costs for each option including the assumption '..invalidly that a supply of slabs from nearby Ravenscraig will be costlessly available from a given capital configuration, a short-term start from a 'clean slate'. Instead, starting to plan and build steel plants, implies that the time required for exploiting economies of scale in shipping are very difficult for an established producer to run a long-run in the steel industry can be a very long time indeed and that investment policies tend to start from the moment around 25% of its output goes to components are also inefficient. Rather, it is our view that the future of both Ravenscraig and Dalzell will be necessarily more costly than the most efficient alternative available. This does not justify the idea that you must first justify basic steel-making in isolation before any proper comparison of costs between the possible options available is incorrect. On pages 22 to 26 of our report we give a detailed assessment of all options including the costs for each option including the assumption '..invalidly that a supply of slabs from nearby Ravenscraig will be costlessly available from a given capital configuration, a short-term start from a 'clean slate'. Instead, starting to plan and build steel plants, implies that the time required for exploiting economies of scale in shipping are very difficult for an established producer to run a long-run in the steel industry can be a very long time indeed and that investment policies tend to start from the moment around 25% of its output goes to components are also inefficient. Rather, it is our view that the future of both Ravenscraig and Dalzell will be necessarily more costly than the most efficient alternative available. This does not justify the idea that you must first justify basic steel-making in isolation before any proper comparison of costs between the possible options available is incorrect. On pages 22 to 26 of our report we give a detailed assessment of all options including the costs for each option including the assumption '..invalidly that a supply of slabs from nearby Ravenscraig will be costlessly available from a given capital configuration, a short-term start from a 'clean slate'. Instead, starting to plan and build steel plants, implies that the time required for exploiting economies of scale in shipping are very difficult for an established producer to run a long-run in the steel industry can be a very long time indeed and that investment policies tend to start from the moment around 25% of its output goes to components are also inefficient. Rather, it is our view that the future of both Ravenscraig and Dalzell will be necessarily more costly than the most efficient alternative available. This does not justify the idea that you must first justify basic steel-making in isolation before any proper comparison of costs between the possible options available is incorrect. On pages 22 to 26 of our report we give a detailed assessment of all options including the costs for each option including the assumption '..invalidly that a supply of slabs from nearby Ravenscraig will be costlessly available from a given capital configuration, a short-term start from a 'clean slate'. Instead, starting to plan and build steel plants, implies that the time required for exploiting economies of scale in shipping are very difficult for an established producer to run a long-run in the steel industry can be a very long time indeed and that investment policies tend to start from the moment around 25% of its output goes to components are also inefficient. Rather, it is our view that the future of both Ravenscraig and Dalzell will be necessarily more costly than the most efficient alternative available. This does not justify the idea that you must first justify basic steel-making in isolation before any proper comparison of costs between the possible options available is incorrect. On pages 22 to 26 of our report we give a detailed assessment of all options including the costs for each option including the assumption '..invalidly that a supply of slabs from nearby Ravenscraig will be costlessly available from a given capital configuration, a short-term start from a 'clean slate'. Instead, starting to plan and build steel plants, implies that the time required for exploiting economies of scale in shipping are very difficult for an established producer to run a long-run in the steel industry can be a very long time indeed and that investment policies tend to start from the moment around 25% of its output goes to components are also inefficient. Rather, it is our view that the future of both Ravenscraig and Dalzell will be necessarily more costly than the most efficient alternative available. This does not justify the idea that you must first justify basic steel-making in isolation before any proper comparison of costs between the possible options available is incorrect. On pages 22 to 26 of our report we give a detailed assessment of all options including the costs for each option including the assumption '..invalidly that a supply of slabs from nearby Ravenscraig will be costlessly available from a given capital configuration, a short-term start from a 'clean slate'. Instead, starting to plan and build steel plants, implies that the time required for exploiting economies of scale in shipping are very difficult for an established producer to run a long-run in the steel industry can be a very long time indeed and that investment policies tend to start from the moment around 25% of its output goes to components are also inefficient. Rather, it is our view that the future of both Ravenscraig and Dalzell will be necessarily more costly than the most efficient alternative available. This does not justify the idea that you must first justify basic steel-making in isolation before any proper comparison of costs between the possible options available is incorrect. On pages 22 to 26 of our report we give a detailed assessment of all options including the costs for each option including the assumption '..invalidly that a supply of slabs from nearby Ravenscraig will be costlessly available from a given capital configuration, a short-term start from a 'clean slate'. Instead, starting to plan and build steel plants, implies that the time required for exploiting economies of scale in shipping are very difficult for an established producer to run a long-run in the steel industry can be a very long time indeed and that investment policies tend to start from the moment around 25% of its output goes to components are also inefficient. Rather, it is our view that the future of both Ravenscraig and Dalzell will be necessarily more costly than the most efficient alternative available. This does not justify the idea that you must first justify basic steel-making in isolation before any proper comparison of costs between the possible options available is incorrect. On pages 22 to 26 of our report we give a detailed assessment of all options including the costs for each option including the assumption '..invalidly that a supply of slabs from nearby Ravenscraig will be costlessly available from a given capital configuration, a short-term start from a 'clean slate'. Instead, starting to plan and build steel plants, implies that the time required for exploiting economies of scale in shipping are very difficult for an established producer to run a long-run in the steel industry can be a very long time indeed and that investment policies tend to start from the moment around 25% of its output goes to components are also inefficient. Rather, it is our view that the future of both Ravenscraig and Dalzell will be necessarily more costly than the most efficient alternative available. This does not justify the idea that you must first justify basic steel-making in isolation before any proper comparison of costs between the possible options available is incorrect. On pages 22 to 26 of our report we give a detailed assessment of all options including the costs for each option including the assumption '..invalidly that a supply of slabs from nearby Ravenscraig will be costlessly available from a given capital configuration, a short-term start from a 'clean slate'. Instead, starting to plan and build steel plants, implies that the time required for exploiting economies of scale in shipping are very difficult for an established producer to run a long-run in the steel industry can be a very long time indeed and that investment policies tend to start from the moment around 25% of its output goes to components are also inefficient. Rather, it is our view that the future of both Ravenscragi
follow: B S undoubtedly takes into account its existing plant configuration when making new investment decisions.

2.3 Demand Prospects

LS correctly identify demand prospects as a key issue in making a case for continuation of production at Ravenscraig. In this respect they argue:

"In our view, the Report fails to provide a sufficiently detailed discussion of the evolution of either UK steel demand or the demand for BS's product range." (p 67).

In fact, the report contained a detailed summary of steel demand drawn from a number of sources i.e. ECSC, the Royal Bank and our own survey of steel users. The results from the latter are referred to at various points in the report, despite the statement by LS to the contrary. We have subsequently conducted a further survey of oil companies which shows that demand from the North Sea industry is buoyant.

The demand forecasts given in the report are broken down into a number of sectors. The results are not explicitly given in terms of product range, however, forecasts for coated and quality steels are given and demand in terms of product range can be inferred from knowledge of the sector from which it emanates. For instance, it is mentioned in the section on demand from oil companies, that development expenditure figures are, for the most part, made up of demand for plate.

In addition, it was not the remit of our study to look in detail at demand for all types of steel. As we have already mentioned we were asked to concentrate on plate. In the interests of conciseness and bearing in mind the time constraints we were working to we maintain that we presented sufficient evidence to support any conclusions which we drew. We would, of course, argue that we presented the final word on the matter and would welcome any further work in this area.

2.4 Imports/Import Substitution

In relation to our discussion of possible areas of future demand, LS agree with the following points,

"Demand prospects are favourable. The UK market has been subject to increasing import penetration and BS increasingly commands a smaller proportion of its home market. In recent years, the average value per tonne of UK imports has been greater than the average value per tonne of UK exports." (P 67)

They go on to say "It is our contention that the researchers set out this data to imply that there are profitable markets both at home and abroad which BS could serve and thus increase the probability that it will require its Scottish operation. If this is the motive, then it is our view than (sic) further analysis is both needed and warranted to substantiate this point." (p 67).

It was indeed our intention to make this implication. The very fact that foreign steel-makers are making increasing inroads into the domestic market of one of the most efficient steel-producers in Europe indicates that BS could expand production to regain its market share. However, LS argue that BS is acting like a textbook monopolist i.e. restricting output and keeping prices high.

"..BS has recently announced price rises across much of the flat product range at a time of ongoing production pauses in Community markets. Whilst this will protect margins, it will facilitate greater import penetration and check the rate of export growth...This behaviour illustrates that the level of production can be manipulated by BS and that it is profit and not output which will be maximised in the coming decade," (p. 68).

This interpretation is a distinct possibility and must be assessed together with BS's claims that it is restricting output because of insufficient demand at a viable price.

3.1 The Impact of New Technology?

Despite the fact that our report contained a fairly detailed discussion of best practice techniques in plate making and finishing, Love and Steven's argue that,

"a second major criticism of the Glasgow study pertains to the short-sighted and invalid..."
The first continuous casters were installed in the 1950's. By 1980 continuous casting accounted for about 25% of world steel production and by 1990 the proportion of steel produced by continuous casting was 84.2% worldwide. Although, it might be expected that thin slab casting will have to raise prices at the high-end in order to compete effectively with continuous casting at the low-quality end of the market, large scale producers have a history of being the first to introduce new techniques, to large scale integrated plants. It is, of course, difficult to answer this question.
of high-quality steels.

As far as the quality of steel is concerned, it should be noted that thin slab casting suffers from a number of drawbacks. Firstly, the large surface area of thin slab implies that products produced from thin slab have lower surface quality as compared with conventional slab. Secondly, the greater thickness of conventional slab implies that the surface of the slab remains flatter following any perturbation to the flow of steel. As Reynolds and Distington (1990, p. 45) point out, "Considering that mould meniscus level stability is the fundamental parameter for good surface quality this represents a significant barrier for near net shape technology to overcome."

Finally, as long as the technology is dependent on scrap-fed electric arc furnaces it will only produce low-quality steel. The use of low residual scrap improves the quality of steel produced in electric-arc furnaces but does not result in quality products that can compete with top-of-the-range standards attainable from conventional steel production methods. Moreover, in Europe the comparative scarcity (vis-a-vis the USA) of low residual scrap may significantly reduce the potential cost advantages of thin slab casting in mini-mills. If this is the case then large scale producers in Europe may be afforded some protection from the threat of low-cost entry that the mini-mill and thin slab casting poses. Taken together, these factors tend to limit the present applicability of thin slab casting, particularly in the case of Scottish steel production which has a reputation for high quality, high value-added products.

It should also be noted that there are several impending innovations in continuous casting techniques which will weaken the ability of thin slab casting to penetrate even the low-quality end of the market. Reynolds and Distington (1990) point to a number of factors that can be expected to significantly improve the efficiency of conventional casting and thus make it more difficult for mini-mills and thin slab casting to compete. To begin with, increased throughput can be achieved by increasing the reliability of conventional casters via the introduction of improved fault detection systems. This would have the effect of reducing 'down time' and increasing the maximum speed of conventional casting above its existing limit of 5 tonnes per minute, compared with the current maximum for thin slab casting of 2 tonnes per minute. Secondly, greater flexibility and efficiency can be attained from conventional casting via the introduction of three process innovations: width adjustment, combination casting and link casting. Width adjustment permits the production of different widths of steel from a single strand, thus reducing the down time necessary for mould changes. As Reynolds and Distington (1990, p. 45) point out, "An equivalent process has not yet been derived for thin slab casting because of the difficulty of buckling when deforming a thin edge."

Similarly, combination casting facilitates increases in product range by allowing the simultaneous production of "narrow slabs or blooms down a slab strand" (Reynolds and Distington (1990)). Link casting allows the production of different grades of steel in a single strand. Again, the main advantage of this innovation is the reduction in down time and the consequent increase in productivity. This point has been neglected by LS who argue that increased product differentiation and demand for specific types of steel will "make it difficult for steel makers to structure throughput in order to generate long production runs." The application of link casting is particularly suited to Ravenscraig where the small size of the converters implies that this site could make significant efficiency gains by tailoring its output to a market that is becoming increasingly specialised and fragmented.

To summarise, LS's arguments regarding technological innovation and thin slab casting appear to be deficient in a number of respects. Firstly, they have failed to provide a detailed assessment of the likely diffusion time for the innovation. Secondly, they have paid insufficient attention to the limitations on product range and quality and finally, they have emphasised new technology only as it applies to thin slab casting and have ignored important process innovations that are applicable to conventional casting. Not surprisingly, therefore, their conclusion that thin slab casting "could call into question the wisdom of the current wave of modernisation of traditional strip mills." is at odds with the views of leading steel analysts. For example, a recent editorial in Metal Bulletin Monthly...
January 1990 p. 7) argues that whilst thin slab casting represents a major innovation, "What perhaps has been lacking is a sense of perspective on this development, for remember "conventional" casting, which has done so much for the advance of the steel industry, can not only cast a very wide range of steels, but is not confined to flat products and has a significantly higher production rate. It is in absolutely no danger of being totally eclipsed."

3.1.2 Direct Reduction/Smelting Reduction

Similar points can be made in relation to the process of direct reduction or smelting reduction. Both of these terms refer to process innovations which will by-pass the normal blast furnace-basic oxygen converter route. This, of course, would mean that coke-ovens and blast furnaces would no longer be required. A recent review of Direct Casting has been published in Steel Times. Amit Chatterjee, the R&D Director of The Tata Iron and Steel Co, India argues that direct reduction has '...not lived up to its early promise' in terms of cost and in terms of inherent limitations in coal-based direct reduction which make it unsuitable for producing high-quality products. He argues that smelting reduction has more potential. However, there is, so far, only one smelting reduction plant in commercial operation. The Corex plant commissioned by Iscor (South Africa) has been producing 300,000 tons per annum since 1989.

The most commonly-held view in the industry appears to be that although the smelting reduction process avoids the high investment costs and environmental problems caused by the use of coke-ovens and blast-furnaces, it is by no means an adequate replacement at this time. Indeed, it may well be that the industry will choose to adapt the traditional route to suit changing economic circumstances. Developments such as the injection of coke and coal into the tuyeres, the use of plasma devices to decrease coke rate, and the use of high quality lump ore to decrease agglomeration costs are proceeding apace. These developments would appear to guarantee a future for the traditional blast-furnace route beyond that suggested by LS.

3.2 Strategic Considerations

The introduction of new technology also poses a problem for BS in a strategic sense. Even if new technologies offer clear long-term advantages, a large monopolistic producer will not rush to introduce these lest its existing investment is rendered obsolete. Rather, it will plan to gradually replace existing capacity with new capacity. These plans are only likely to be upset if new entrants reduce profitability in key markets. Given that mini-mills require less capital investment than today's dominant technology, there is an argument that BS now faces a greater threat to competition due to this potential reduction in minimum efficient scale. We have already argued that these mills will tend to compete at the lower end of the product range. As far as BS is concerned, the loss of profitability on low-grade products could also jeopardise the rest of its product range since large-scale integrated producers cannot concentrate solely on high-grade products. As mentioned above, however, the existing producers can attempt to ward off potential competition by introducing process improvements in the blast-furnace/concast technology.

However, this is not the only form of defence which is available to BS. It can seek to protect its markets by extending its control over steel distribution. Already a very strong force in UK steel stockholding, BS is in a position to squeeze potential competitors by restricting their access to steel users. It may also attempt to stave off competition by entering into long-term contracts with large purchasers of steel. Finally, while the reduction in minimum efficient scale is an advantage to potential new steel producers, it is also a disadvantage in that the capital required to mount a predatory bid is much less than would be the case for a large scale integrated producer. Thus, new entrants relying on mini-mill technology would always be vulnerable to takeover by a profitable large-scale producer who wished to retain control over the market.

Thus, not only are there technological grounds for believing that the advent of new techniques of slab casting and direct reduction will not be as immediate or as dramatic as LS suggest, there are also reasons to believe that BS will try to protect its existing capital base by strategic action in the steel and capital markets.

A. Conclusion

In this paper we have attempted to deal with the...
criticisms made by L. With regard to new technological developments. We have demonstrated that the track record of the processes which L. mentioned in their review is not a long or particularly successful one at this stage. In addition there are clearly problems associated with the introduction of these processes even in the unlikely case that there are no competing developments in existing technology. It is therefore difficult to take seriously the claims of L. especially in view of the fact that they have not presented any costings or have considered ongoing adaptations of existing technology. In any event, their proposals are certainly too vague a foundation on which to base a survival strategy for the Scottish steel industry.

Footnotes
1. Published in February 1990.
3. For a description of these plants see "Continuous Casting" in Metal Bulletin Monthly, January 1990.

References

APPENDIX
There are a number of other points made in the review which are of a political nature and relate to the campaigning strategy of the 'Scottish steel lobby'. It is not our job as economists to comment on these matters and we were not asked to do so by the commissioners of our report. However, since one of the comments contains a factually incorrect inference and relates to the remit which we were given by Strathclyde Regional Council we will respond briefly to that point. In the concluding remarks of the review the following statement is made: "In the December 1989 Commentary it was suggested that the previously solid Scottish Steel lobby has irretrievably fragmented, thus the Ravenscraig shop stewards did not support or cooperate with the body which commissioned the Glasgow research. It has been suggested to us that, because of this split, those commissioning the study did not wish their consultants to discuss steelmaking or ship making but instead to concentrate narrowly, or, the plate mill's from the influences shaping the remainder of the Scottish sector."' In response to the first point, we would like to point out that we did, in fact, meet with, and had the co-operation of, the stewards at Ravenscraig both in the production of our March 1988 report which concerned steel production and in the more recent report which did concentrate on cast production. It is our view that the future of Ravenscraig and Da'zell are closely linked, and we have demonstrated this point in this paper. We refer to 93.
regard to the second point, the remit we were given was to look at the case for siting a single plate mill in Scotland. It was widely believed by those in the industry and by Strathclyde Regional Council that a decision by BS on this question was imminent and that any research should focus on this question. Hence the LS interpretation (based on ‘suggestions’ from unnamed sources) is wholly unwarranted.

In any event, we regard the inclusion of these political points as inappropriate to an academic publication. The same can be said of other comments in the review including the criticisms of the campaigning strategy of the steel unions in the mid eighties (p 66).

The review is also riddled with statements such as the following: “these points in themselves are not sufficient to justify the above assertion and the report has been severely criticised on this basis” (p 65). The inclusion of such statements which seek to cast doubt on our conclusions without further substantiation other than oblique reference to unnamed critics does nothing to further this extremely important debate and is a breach of academic principles. This paper has been concerned with the substantive economic points raised in the review by Love and Stevens and we would appeal for any further debate to be conducted in a more academic spirit.

A final point concerns the suitability of Hunterston as a site for developing the new technology which LS describe. We acknowledge that the Scottish steel industry would now be able to argue a stronger case for the retention of existing capacity if Hunterston, rather than Ravenscraig, had been developed as the centre of Scottish steel production. However, while this decision is a matter of regret, it does not follow that Hunterston is an ideal site for developing a mini-mill. Hunterston’s outstanding natural advantage is its deep-water facility. However, the tonnages involved in mini-mill production are not large enough to effectively make use of this advantage. There are many other sites around the coast of the UK which would be at least as well suited to the establishment of a mini-mill as Hunterston. For example, Invergordon has excellent port facilities, experience of metal production using electrolytic techniques and is better sited for the European market than Hunterston. Further, the port facilities at Invergordon are not controlled by BS. A mini-mill producer at Invergordon would not have the problem of gaining access to port facilities controlled by its greatest potential rival.