Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

On multi-avoidance of generalized patterns

Kitaev, Sergey and Mansour, Toufik (2005) On multi-avoidance of generalized patterns. Ars Combinatoria, 76. pp. 321-350.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In [Kit1] Kitaev discussed simultaneous avoidance of two 3-patterns with no internal dashes, that is, where the patterns correspond to contiguous subwords in a permutation. In three essentially different cases, the numbers of such n-permutations are 2n−1, the number of involutions in n, and 2En, where En is the n-th Euler number. In this paper we give recurrence relations for the remaining three essentially different cases. To complete the descriptions in [Kit3] and [KitMans], we consider avoidance of a pattern of the form x−y−z (a classical 3-pattern) and beginning or ending with an increasing or decreasing pattern. Moreover, we generalize this problem: we demand that a permutation must avoid a 3-pattern, begin with a certain pattern and end with a certain pattern simultaneously. We find the number of such permutations in case of avoiding an arbitrary generalized 3-pattern and beginning and ending with increasing or decreasing patterns.