The new simple design equations for the ultimate compressive strength of imperfect stiffened plates
Ozguc, Ozgur and Das, Purnendu K. and Barltrop, Nigel (2007) The new simple design equations for the ultimate compressive strength of imperfect stiffened plates. Ocean Engineering, 34 (7). pp. 970-986. ISSN 0029-8018 (http://dx.doi.org/10.1016/j.oceaneng.2006.05.013)
Full text not available in this repository.Request a copyAbstract
The new simple design equations for predicting the ultimate compressive strength of stiffened plates with initial imperfections in the form of welding-induced residual stresses and geometric deflections were developed in this study. A non-linear finite element method was used to investigate on 60 ANSYS elastic-plastic buckling analyses of a wide range of typical ship panel geometries. Reduction factors of the ultimate strength are produced from the results of 60 ANSYS inelastic finite element analyses. The proposed design equations have been developed based on these reduction factors. For the real ship structural stiffened plates, the most general loading case is a combination of longitudinal stress, transverse stress, shear stress and lateral pressure. The new simplified analytical method was generalized to deal with such combined load cases. The accuracy of the proposed equations was validated by the experimental results. Comparisons show that the adopted method has sufficient accuracy for practical applications in ship design.
-
-
Item type: Article ID code: 4967 Dates: DateEventMay 2007PublishedSubjects: Naval Science > Naval architecture. Shipbuilding. Marine engineering Department: Faculty of Engineering > Naval Architecture, Ocean & Marine Engineering Depositing user: Strathprints Administrator Date deposited: 01 Dec 2007 Last modified: 08 Apr 2024 16:14 URI: https://strathprints.strath.ac.uk/id/eprint/4967