http://dx.doi.org/10.1109/SSP.2014.6884638

This version is available at https://strathprints.strath.ac.uk/49436/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
Multiple Shift Maximum Element Sequential Matrix Diagonalisation for Parahermitian Matrices

Jamie Corr*, Keith Thompson*, Stephan Weiss*, John G. McWhirter†, Soydan Redif‡, Ian K. Proudler§
*Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, Scotland
†School of Engineering, Cardiff University, Cardiff, Wales, UK
‡Electrical and Electronic Engineering Department, European University of Lefke, Cyprus
§School of Electrical, Electronics and Systems Engineering, Loughborough University, Loughborough, UK
{jamie.corr,keith.thompson,stephan.weiss}@strath.ac.uk

Abstract—A polynomial eigenvalue decomposition of parahermitian matrices can be calculated approximately using iterative approaches such as the sequential matrix diagonalisation (SMD) algorithm. In this paper, we present an improved SMD algorithm which, compared to existing SMD approaches, eliminates more off-diagonal energy per step. This leads to faster convergence while incurring only a marginal increase in complexity. We motivate the approach, prove its convergence, and demonstrate some results that underline the algorithm’s performance.

I. INTRODUCTION

Parahermitian polynomial matrices occur in e.g. broadband sensor array problems: when in calculating correlations of a data vector \(x[n] \) proper time delays rather than phase shifts, as in the narrowband case, must be considered. In this context, a useful quantity is the space-time covariance matrix \(R[τ] = \mathcal{E}\{x[n]x^H[n−τ]\} \), where \(\mathcal{E}\{\cdot\} \) denotes expectations and \(\{\cdot\}^H \) is the Hermitian transpose operator, the z-transform of which is the cross-spectral density (CSD) matrix \(R(z) = \sum_τ R[τ]z^{−τ} \). Define the parahermitian operator \(\hat{R}(z) = R(z)^H(z^{−1}) \), i.e hermitian transposing all matrix-value coefficients and time-reverses the auto- and cross-correlation terms in \(R[τ] \). Note that the CSD matrix is parahermitian with \(\hat{R}(z) = R(z) \).

An eigenvalue decomposition offers a powerful tool to factorise Hermitian matrices to e.g. reveal subspace decompositions or identify optimal transforms for coding and compression [1], [2]. For the polynomial case a polynomial EVD (PEVD) has been generalised in [4] as

\[
R(z) ≈ \hat{H}(z)\Gamma(z)\hat{H}(z) \quad ,
\]

where \(\hat{H}(z) \) is paraunitary such that \(\hat{H}(z)\hat{H}(z) = \hat{H}(z)\hat{H}(z) = I \) and \(\Gamma(z) \) is diagonal and spectrally majorised [2]. The approximation in (1) has been suggest to hold very closely if the polynomial order of \(\hat{H}(z) \) is permitted to grow arbitrarily large [3]. This PEVD has found applications in subband coding [5], filter bank-based channel coding [6], design of broadband precoding and equalisation of MIMO systems [7], broadband angle of arrival estimation [8], and other problems.

For the calculation of the PEVD in (1), a number of iterative algorithms have been suggested, including the second order sequential best rotation (SBR2) algorithm [4], an approximate PEVD [10], a subband coding-optimised version of SBR2 [5] and a sequential matrix decomposition (SMD) algorithm [9]. All these algorithms calculate a sequence of simple paraunitary transformations with the aim of reducing off-diagonal power in the parahermitian matrix. The SMD algorithms have shown superior convergence due to eliminating an entire column rather than just the maximum off-diagonal element, as in the case of SBR2. The transfer of additional energy comes at the expense of having to perform a matrix multiplication for every lag value of the parahermitian matrix. In this paper, we extend this idea by transferring additional energy from multiple columns, whereby little extra cost over the standard SMD algorithm arises.

In this paper, Sec. II reviews iterative PEVD approximations; Sec. III outlines the proposed algorithm and its convergence; results are shown in Sec. IV and conclusions drawn in Sec. V.

II. ITERATIVE PEVD ALGORITHMS

A. Second Order Sequential Best Rotation Algorithm

The idea of SBR2 is to iteratively diagonalise \(R(z) \), whereby at each step the maximum off-diagonal element is identified and its energy transferred onto the diagonal by means of an elementary paraunitary transformation. The latter consists of a delay to bring the element in question onto the lag zero matrix \(R[0] \), where it is eliminated by a Jacobi rotation.

Starting with \(S^{(0)}(z) = R(z) \), at the \(i \)th iteration we first perform a delay step

\[
S^{(i)}(z) = \hat{\Lambda}^{(i)}(z)S^{(i−1)}(z)\Lambda^{(i)}(z) \quad , \quad i = 1 \ldots I ,
\]

where

\[
\Lambda^{(i)}(z) = \text{diag}\{1 \ldots 1 \ldots z^{−τ^{(i)}} \ldots 1\}
\]

(3)
shifts the \(k^{(i)} \)th column of \(S^{(i−1)}(z) \) by \(τ^{(i)} \) samples, and \(\hat{\Lambda}^{(i)} \) shifts the \(k^{(i)} \)th row in the opposite lag direction.

To find the maximum off-diagonal element, we define a modified column vector \(S^{(i)}_k[τ] \in \mathbb{C}^{M−1} \), which contains all elements in the \(k^{(i)} \)th column of \(S^{(i)}[τ] \) except for the
diagonal element. Therefore, the optimum parameter set for
(3) is obtained from
\[\{k^{(i)}, \tau^{(i)}\} = \arg \max_{k, \tau} \|S_k^{(i-1)}[\tau]\|_\infty, \]
(4)
such that the optimum off-diagonal element will now lie in the
lag zero matrix \(S^{(i)[0]}\).

The elimination of the maximum off-diagonal element is
accomplished by a Jacobi rotation, denoted here by a unitary
matrix \(Q^{(i)}\),
\[S^{(i)}(z) = Q^{(i)H} S^{(i)[z]}(z) Q^{(i)}. \]
(5)
This Jacobi rotation is applied to only two rows and columns
of \(S^{(i)}(z)\), defined by the column and row indices of the
maximum off-diagonal element according to (4). The energy
of this maximum element is transferred to the diagonal of
\(S^{(i)}[0]\), allocating more energy to the element higher up on
the diagonal, which favours but does not guarantee eventual
spectral majorisation.

The algorithm has been proven to converge [4], since the
parametric operations do not alter the total energy in
\(S^{(i)}(z)\), while in every step the off-diagonal energy is further
minimised. The algorithm stops after \(l\) iterations, either when
a maximum number of iterations is reached, or if the off-
diagonal energy falls below a defined threshold. In this case,
the paraunitary matrix
\[H(z) = \prod_{i=1}^{l} A^{(i)}(z) Q^{(i)} \]
(6)
performs the computed decomposition.

B. Sequential Matrix Diagonalisation Algorithm

SMD algorithms differ from SBR2 in that they clear all
off-diagonal elements of the zero lag matrix \(S^{(i)[0]}\) at every
step. An initialisation step is required to ensure that all
instantaneous correlations are removed by means of an EVD,
\[S^{(0)[0]} = Q^{(0)H} R^{(0)} Q^{(0)}, \]
(7)
such that \(S^{(0)[0]}\) is diagonal, and \(S^{(0)}(z) = Q^{(0)H} R^{(z)} Q^{(0)}.\)
Subsequently, at the \(i\)th iteration, in a first step the \(k^{(i)}\)th
column is transferred onto the zero lag matrix according to (2),
creating a sparsity structure for \(S^{(i)[0]}\) as shown in Fig. 1(a).
In the second step, the matrix \(S^{(i)[0]}\) is diagonalised according
to (5), whereby \(Q^{(i)}\) is the modal matrix of an EVD of \(S^{(i)[0]}\)
rather than a simple Jacobi rotation.

SMD identifies the \(k^{(i)}\)th column containing maximum off-
diagonal energy by replacing the \(L_\infty\)-norm in (4) by the \(L_2\)-
norm. An alternative version, called maximum element SMD
(ME-SMD), searches for the column containing the maximum
off-diagonal element identical to SBR2 in (4), but performs
the SMD-characteristic complete diagonalisation.

The major advantage of SMD with respect to SBR2 is that
more energy is transferred onto the diagonal per iteration,
hence the algorithm will diagonalise a parahermitian matrix in
fewer iterations. However, the matrix \(Q^{(i)}\), although computed
only based on \(S^{(i)[0]}\), has to be applied to \(S^{(i)[\tau]}\) for every
lag \(\tau\). Since \(Q^{(i)}\) no longer has the simple structure of a
Jacobi rotation but is non-sparse, SMD has a significantly
higher computational complexity than SBR2. However, SMD
is capable of achieving levels of diagonalisation that are unob-
tainable with SBR2, and can generally realise diagonalisation
with paraunitary filters of lower order compared to SBR2.

III. MULTIPLE SHIFT ME-SMD ALGORITHM

A. Idea

As discussed in Sec. II-B, the primary advantage of the
SMD algorithm over SBR2 is its faster convergence due to
eliminating the off-diagonal energy of an entire column in the
lag zero matrix. The idea of the proposed algorithm is to move
more than one column — and therefore more energy — onto
the lag zero matrix and hence reduce even more off-diagonal
energy per iteration. This creates a more complex search and
EVD per step; however, the subsequent application of the
modal matrix to all lags remains the same. The algorithm
proposed below is an evolution of the ME-SMD search, but
aims to further increase the off-diagonal energy in the zero lag
matrix by additional column shifts at every step; we therefore
refer to this approach as multiple shift ME-SMD (MSME-
SMD) algorithm.

B. Algorithm

The initialisation of the proposed algorithm follows the
SMD family with (7). At the \(i\)th iteration, we first use (4) to
identify the maximum off-diagonal element, and time-shift it
with its column onto the lag zero slice, resulting in the sparsity
structure shown in Fig. 1(a). By permuting this matrix to the
structure in Fig. 1(b), any subsequent operations within the \(i\)th
iteration will not affect this maximum off-diagonal element as
long as the upper 2 \(\times\) 2 matrix remains untouched.

Different strategies to identify and time-shift further
columns within the \(i\)th iteration exist. The strategy employed
in MSME-SMD uses a set of reduced search spaces to ensure
\((M - 1)\) columns are shifted onto the zero lag at each iteration.
After the operations shown in Fig. 1 have been completed, the
search space shown in Fig. 2(a) is used. Only the highlighted
areas in Fig. 2(a) are considered because all their elements can
be permuted into the upper 3 \(\times\) 3 matrix. If an element outside
the search space in Fig. 2(a) is chosen, such as element 2 in
Fig. 2(b), applying permutations results in the elements being
With a sufficiently large number of iterations \(M \), the multiple-shift ME-SMD algorithm approximately diagonalises \(R(z) \) and decreases the power in off-diagonal elements to an arbitrarily low threshold \(\epsilon > 0 \).

Proof: A number of norms are required to prove Theorem 1. With \(s_{m,m}^{(i)}[0] \) the \(m \)th diagonal element of \(S^{(i)}[0] \),

\[
N_1 \{ S^{(i)}(z) \} \triangleq \sum_{m=1}^{M} |s_{m,m}^{(i)}[0]|^2
\]

is invariant to shifts and permutations, i.e.,

\[
N_1 \{ S^{(i)}(z) \} = N_1 \{ \Lambda^{(i)}(z)S^{(i-1)}(z)\Lambda^{(i)}(z) \}
\]

\[
= N_1 \{ S^{(i-1)}(z) \} .
\]

The energy of the lag zero matrix

\[
N_2 \{ S^{(i)}(z) \} \triangleq \| S^{(i)}[0] \|^F
\]

is invariant under any unitary operation,

\[
N_2 \{ S^{(i)}(z) \} = N_2 \{ Q^{(i)}S^{(i)}(z)Q^{(i)\dagger} \}
\]

\[
= N_2 \{ S^{(i)}(z) \} .
\]

Further,

\[
N_3 \{ S^{(i)}(z) \} \triangleq N_2 \{ S^{(i)}(z) \} - N_1 \{ S^{(i)}(z) \}
\]

\[
N_4 \{ S^{(i)}(z) \} \triangleq \sum_{\tau} \| S^{(i)}[\tau] \|^2_F
\]

where \(\| \cdot \|_F \) denotes Frobenius norm and the total energy \(N_4 \{ \cdot \} \) is invariant under the application of a paraunitary \(G^{(i)}(z) \) such that

\[
N_4 \{ S^{(i)}(z) \} = N_4 \{ G^{(i)}(z)S^{(i)}(z)G^{(i)}(z) \}
\]

\[
= N_4 \{ S^{(i-1)}(z) \} .
\]

For the off-diagonal norm at the \(i \)th iteration,

\[
N_3 \{ S^{(i)}(z) \} \geq 2\| s_{k(i)}^{(i)}[\tau^{(i)}] \|^2 = 2\gamma^{(i)} .
\]

In the following rotation step with \(Q^{(i)} \), this energy is transferred onto the main diagonal such that \(N_3 \{ S^{(i)}(z) \} = 0 \). With

\[
N_1 \{ S^{(i)}(z) \} > N_1 \{ S^{(i)}(z) \} + 2\gamma^{(i)}
\]

\[
= N_1 \{ S^{(i-1)}(z) \} + 2\gamma^{(i)}
\]

and \(\gamma^{(i)} > 0 \), \(N_1 \{ S^{(i)}(z) \} \) increases monotonically with iteration index \(i \). Since

\[
N_1 \{ S^{(i)}(z) \} \leq N_4 \{ S^{(i)}(z) \} \quad \forall i ,
\]

with the overall energy, \(N_4 \{ S^{(i)}(z) \} \), remaining constant, \(N_1 \{ S^{(i)}(z) \} \) must have a supremum \(S \),

\[
S = \sup_i N_1 \{ S^{(i)}(z) \} .
\]

It follows that for any \(\epsilon > 0 \) there must be an iteration number \(I \) for which \(S - N_1 \{ S^{(i)}(z) \} < \epsilon \) and so the increase \(2\gamma^{(i+1)}\), \(i \geq 0 \), at any subsequent stage must satisfy

\[
2\gamma^{(i+1)} \leq S - N_1 \{ S^{(i)}(z) \} < \epsilon .
\]

Hence, for any \(\epsilon > 0 \), there must be an iteration \(I \) by which \(\gamma^{(i+1)}, i \geq 0 \), is bounded by \(\epsilon \).
IV. RESULTS

To demonstrate the proposed algorithm, we assess the reduction of off-diagonal energy at the ith iteration,

$$E^{(i)}_{\text{norm}} = \frac{\sum_{\tau} \sum_{k=1}^{M} \|S_{k}^{(i)}(\tau)\|^2}{\sum_{\tau} \|R(\tau)\|^2} ,$$

(21)

normalised by the total power $N_q\{S^{(i)}(z)\} = N_q\{R(z)\} = \sum_{\tau} \|R(\tau)\|^2$. The comparison to the SBR2 [4] and ME-SMD algorithms [5] is calculated over an ensemble of 100 realisations of random parahermitian 5×5 matrices $R(z)$ of order 11. These randomised parahermitian matrices can be generated from matrices $A(z) \in \mathbb{C}^{5 \times 5}$ of order 6 with independent and identically distributed zero mean unit variance complex Gaussian entries, such that $R(z) = A(z) \tilde{A}(z)$.

The results are depicted in Fig. 3, and confirm the enhanced convergence of ME-SMD over SBR2 due to eliminating an entire off-diagonal element rather than just the maximum off-diagonal element at every iteration step. The proposed MSME-SMD algorithm, by eliminating at least as much as energy as the ME-SMD algorithm per iteration step, provides even faster convergence, and reaches higher levels of diagonalisation as measured by the normalised off-diagonal energy, at the cost of a marginally higher computational complexity.

Fig. 4 shows the power spectral densities along the diagonalised CSD matrix. As hinted earlier, the ordering of energy encourages spectral majorisation — the strict ordering of PSDs at all frequencies — is achieved best by MSME-SMD within the given number of iterations.

V. CONCLUSION

We have presented an enhanced sequential matrix diagonalisation, which iteratively approximates the PEVD of a parahermitian matrix. The algorithm is based on a maximum element SMD version, which at each iteration step brings the maximum off-diagonal element onto the lag zero matrix, where then the entire column is eliminated. Since the main algorithm complexity is to apply a unitary matrix of every lag value of the parahermitian matrix, the idea pursued in this paper has been to transfer more off-diagonal energy per iteration step compared to ME-SMD. We have demonstrated the multiple-shift maximum element SMD to be capable of shifting a total of $(M - 1)$ columns. Due to this additional energy, the algorithm converges significantly faster than both SBR2 and ME-SMD.

ACKNOWLEDGEMENT

This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) Grant number EP/K014307/1 and the MOD University Defence Research Collaboration in Signal Processing.

REFERENCES