Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Evaluation of grounding grid's effective area

Farhan Bin Hanaffi, F and Siew, Wah Hoon and Timoshkin, Igor and LU, Hailiang and Wang, Yu and Lei, Lan and Wen, Xishan (2014) Evaluation of grounding grid's effective area. In: 2014 IEEE International Conference on Lightning Protection (ICLP). IEEE, Piscataway, New Jersey. (In Press)

[img] PDF (Evaluation of Grounding Grid's Effective Area)
Evaluation_of_Grounding_Grid_s_Effective_Area.pdf - Accepted Author Manuscript

Download (592kB)

Abstract

Grounding grid performance when subject to lightning current are different when compared to power frequency environment. Various computer models have been developed to understand transient grounding performance. The models led to the introduction of an "effective area" concept. It is an important concept as the parameter is used to optimize grounding-grid design. Several approaches and numerical equations are proposed by previous researchers to estimate the effective area. Each equation defines the grounding impedance at the injection point. In this paper, transient ground potential rise (TGPR) alongside the grounding grid is used to evaluate the empirical equations proposed by previous researchers. Simulations are based on the electromagnetic approach and the governing equations are solved using the Finite element method (FEM). Different soil resistivity and impulse front times were considered in the simulations.