
Stochastic Dynamics of SIRS Epidemic Models with

Random Perturbation ∗

Qingshan Yang1, Xuerong Mao 2†

1. School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, Jilin, P. R. China.

2. Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, UK

Abstract: In this paper, we consider a stochastic SIRS model with parameter perturbation, which is
a standard technique in modeling population dynamics. In our model, the disease transmission coeffi-
cient and the removal rates are all affected by noise. We show that the stochastic model has a unique
positive solution as it is essential in any population model. Then we establish conditions for extinction
or persistence of the infectious disease. When the infective part is forced to expire, the susceptible
part converges weakly to an inverse-gamma distribution with explicit shape and scale parameters. In
case of persistence, by new stochastic Lyapunov functions, we show the ergodic property and positive
recurrence of the stochastic model. We also derive an estimate for the mean of the stationary distri-
bution. The analytical results are all verified by computer simulations, including examples based on
experiments in laboratory populations of mice.
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1 Introduction

Numerous health agencies frequently use mathematical models to analyze the spread and the control of
infectious diseases in host populations. There is an intensive literature on the mathematical epidemi-
ology, for examples, [9, 10, 11, 12, 14, 17, 18, 20, 22, 23, 25, 28, 29, 31, 32, 40, 41, 42, 43, 44, 45, 46, 48]
and the references therein. In particular, [5, 6, 38] are excellent books in this area.

One of classic epidemic models is the SIR model, which subdivides a homogeneous host pop-
ulation into three epidemiologically distinct types of individuals, the susceptible, the infective, and
the removed, with their population sizes denoted by S, I and R, respectively. It is suitable for some
infectious diseases of permanent or long immunity, such as chickenpox, smallpox, measles, etc. For
some diseases, see e.g. influenza and sexual diseases, the removed or recovered individuals finally go
back to the susceptible state, called the SIRS model, which can be characterized by the following
differential equations 

dS = (λ− βSI − dSS + γR)dt,
dI = (βSI − (dI + υ)I)dt,
dR = (υI − (dR + γ)R)dt.

(1.1)
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Recall that the parameter λ > 0 is the rate of susceptible individuals recruited into the population
(either by birth or immigration) per unit time; β > 0 is some transmission coefficient and it is assumed
that the rate at which the susceptible individuals acquire the infection is proportional to the number
of encounters between the susceptible and infective individuals per unit time, being βSI; dS > 0 is
the natural mortality rate or the removal rate of the susceptible individual; dI > 0 is the removal rate
of infectious individual and usually be the plus of the natural mortality rate and the mortality rate
caused by the disease; υ > 0 is the recovery rate of infective individual; dR > 0 is the removal rate of
the recovered individual and γ > 0 is the rate at which the recovered individual loses immunity. It is
well known that if the reproductive number R0 = λβ

dS(dI+υ) ≤ 1([13], [2], [6], [26], etc), Eq. (1.1) has

a globally stable disease free equilibrium E0 = ( λ
dS
, 0, 0) whilst R0 > 1 there exists a unique globally

stable endemic equilibrium E∗ = (S∗, I∗, R∗).
There is a lot of variability in the spread of the disease and this is incorporated in a model via

assumptions about stochasticity in the transmission coefficient β and the removal rates dS , dI and
dR, which is one of standard ways in modeling stochastic population systems (see e.g. [19], [30],
[24], [47]). By the stochastic Lyapunov functions, we obtain some analytical results for stochastic
model posed in this paper. In particular we establish conditions for extinction or persistence of the
infective population. In case of persistence, we show the existence and the uniqueness of the stationary
distribution. Furthermore, we derive an estimate for the mean of the stationary distribution.

Throughout this paper, we let (Ω,F , {Ft}t≥0,P) be a complete probability space with a filtration
{Ft}t≥0 satisfying the usual conditions (i.e., it is increasing and right continuous while F0 contains all
P-null sets), and let B(t) = (B1(t), · · · , BN (t)) be an N -dimensional standard Brownain motion (i.e.
the N components Bi(t), 1 ≤ i ≤ N are independent scalar Brownian motions). In practice we usually
estimate a parameter by an average value plus an error term. In this case, the parameters β, dS , dI
and dR in Eq. (1.1) change to random variables β̃, d̃S , d̃I and d̃R respectively such that

β̃ = β + error0, d̃S = dS + error1, d̃I = dI + error2, d̃R = dR + error3.

Accordingly, Eq. (1.1) becomes
dS = (λ− βSI − dSS + γR)dt− SIerror0dt− Serror1dt,

dI = (βSI − (dI + υ)I)dt+ SIerror0dt− Ierror2dt,

dR = (υI − (dR + γ)R)dt−Rerror3dt.

(1.2)

By the central limit theorem, the error terms erroridt, 0 ≤ i ≤ 3 may be approximated by a normal
distribution with zero mean and variances σ2

i dt, 0 ≤ i ≤ 3, respectively. That is, erroridt ∼ N(0, σ2
i dt).

Since these erroridt, 0 ≤ i ≤ 3 may correlate to each other, we represent them by the N -dimensional
Brownian motion B(t) = (B1(t), · · · , BN (t)) as follows

erroridt =
N∑
j=1

σijdBj(t), 0 ≤ i ≤ 3,

where dBj(t) = Bj(t+ dt)−Bj(t), σij are all real numbers such that

σ2
i :=

N∑
j=1

σ2
ij , 0 ≤ i ≤ 3, σ2 :=

3∑
i=0

σ2
i .
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Thus Eq. (1.2) is characterized by the following Itô SDE

dS = (λ− βSI − dSS + γR)dt− SI
N∑
j=1

σ0jdBj(t)− S
N∑
j=1

σ1jdBj(t),

dI = (βSI − (dI + υ)I)dt+ SI

N∑
j=1

σ0jdBj(t)− I
N∑
j=1

σ2jdBj(t),

dR = (υI − (dR + γ)R)dt−R
N∑
j=1

σ3jdBj(t).

(1.3)

Obviously when σ2
1 +σ2

2 +σ2
3 = 0, d(S+I+R) = (λ− (dSS+dII+dRR))dt and thus S+I+R is

bounded. There are lots of papers in such a case. For example, Tornatore, Buccellato and Vetro [47]
discuss the asymptotic stability of the disease free equilibrium of the SDE SIR model; Chen and Li
[15] study another SDE version of the SIR model both with and without delay where they introduce
stochastic noise in a way different from ours and that of Tornatore, Buccellato and Vetro [47]; Lu
[30] extends the results of [47] by including the possibility of temporary immunity and improving the
analytical bound on the sufficient condition of the stability of the disease free equilibrium. Recently,
Gray et. al [19] establish the conditions of extinction and persistence of the SDE SIS model. But there
are few papers considered the stochastic perturbations on both disease transmission coefficient and
removal rates, which may happen in the real world. In our model, S+ I +R is not bounded in case of
σ2

1 +σ2
2 +σ2

3 6= 0 even if it is sufficiently small. Here we use the limit results of Chow [16] and moments
methods to derive conditions on the asymptotic stability of the disease free equilibrium. We also note
that the role of the influx parameter λ is different between the deterministic and stochastic model
(see Remark 4.1). In the case of persistence, by new stochastic Lyapunov functions to counteract
high-order terms, we establish conditions for the persistence of I(t), where we show the existence of
its stationary distribution and ergodic property. We also give an estimate of the mean by the ergodic
theory.

It should be pointed out that only some of the parameters are varied but not all in this paper.
One reason is to avoid the paper becoming too complicated. Another reason is because the technique
of parameter perturbations used in this paper is not appropriate for some parameters. For example,
if λ were perturbed by a Brownian motion, the value of S might become negative.

The paper is organized as follows. In Section 2, we introduce some preliminaries to be used in
the later sections. In Section 3, we prove the positivity of the solution which is essential in stochastic
population dynamics. In Section 4, we establish the conditions for the extinction of infectious diseases
whist the susceptible population converges weakly to an inverse-gamma distribution with explicit
shape and scale parameters, where the mean and the variance of the susceptible are also expressed
explicitly. In Section 5, we discuss the ergodicity of the SDE model under mild conditions. The
mean of the stationary distribution is also estimated by the ergodic theory. In Section 6, we make a
concluding remark to complete the paper.

2 Preliminary

In this paper we will use the law of large numbers for martingales and some criteria on ergodicity of
the SDEs, so let us recall some classic results on them.
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Assume that (sn,Fn, n ≥ 1) is a martingale with E|sn| < ∞, and x1 = s1, xn = sn − sn−1 for
n ≥ 2. The following result is given by Chow (Theorem 5(a) in [16]), and we introduce it as a lemma.

Lemma 2.1. Let (yn,Fn−1, n ≥ 2) be strictly positive stochastic sequence such that Exny−1
n <∞. If

1 ≤ p ≤ 2, then
lim
n→∞

sny
−1
n = 0

a.e. where
∞∑
n=2

E(|xn|p|Fn−1)y−pn <∞, yn ↑ ∞.

Next, we give some criteria on the ergodic property. Denote

Rl+ = {x ∈ Rl : xi > 0 for all 1 ≤ i ≤ l}.

In general, let X be a regular temporally homogeneous Markov process in El ⊂ Rl+ described by the
SDE

dX(t) = b (X(t)) dt+
d∑
r=1

σr (X(t)) dBr(t), (2.1)

with initial value X(t0) = x0 ∈ El and Br(t), 1 ≤ r ≤ d, are standard Brownian motions defined on
the above probability space. The diffusion matrix is defined as follows

A(x) = (Aij(x))1≤i,j≤l , Aij(x) =
d∑
r=1

σir(x)σjr(x).

Define the differential operator L associated with the equation (2.1) by

L =
l∑

i=1

bi(x)
∂

∂xi
+

1
2

l∑
i,j=1

Aij(x)
∂2

∂xi∂xj
.

If L acts on a function V ∈ C2,1(El ×R+;R), then

LV (x) =
l∑

i=1

bi(x)
∂V

∂xi
+

1
2

l∑
i,j=1

Aij(x)
∂2V

∂xi∂xj
,

where Vx = ( ∂V∂x1
, · · · , ∂V∂xl

) and Vxx =
(

∂2V
∂xi∂xj

)
l×l

. By Itô’s formula, we have

dV (X(t)) = LV (X(t))dt+
d∑
r=1

Vx(X(t))σr (X(t)) dBr(t).

Lemma 2.2. ([21]) We assume that there exists a bounded domain U ⊂ El with regular boundary,
having the following properties:

(B.1) In the domain U and some neighborhood thereof, the smallest eigenvalue of the diffusion
matrix A(x) is bounded away from zero.
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(B.2) If x ∈ El\U , the mean time τ at which a path issuing from x reaches the set U is finite,
and supx∈K Exτ <∞ for every compact subset K ⊂ El.

Then, the Markov process X(t) has a stationary distribution υ(·) with density in El such that for
any Borel set B ⊂ El

lim
t→∞

P (t, x,B) = υ(B),

and

Px

{
lim
T→∞

1
T

∫ T

0
f
(
x(t)

)
dt =

∫
El

f(x)υ(dx)
}

= 1,

for all x ∈ El and f(x) being a function integrable with respect to the probability measure υ.

Remark 2.1. (i) The existence of the stationary distribution with density is shown by Theorem
4.1 on page 119 and Lemma 9.4 on page 138 in [21] while the ergodicity and the weak convergence
are shown by Theorem 5.1 on page 121 and Theorem 7.1 on page 130 in [21].

(ii) To verify Assumptions (B.1) and (B.2), it suffices to show that there exists a bounded domain
U with regular boundary and a non-negative C2-function V such that A(x) is uniformly elliptical in
U and for any x ∈ El\U , LV (x) ≤ −C for some C > 0 (See e.g. [49], page 1163).

3 Existence and uniqueness of positive solution

In order for the SDE SIRS model to make sense, we must show that this model has a unique global
positive solution. Since the SDE SIRS model is a special SDE, the existing general existence-uniqueness
theorem on SDEs (see e.g., [33], [34], [36]) is not applicable. We need to establish the following theorem.

Theorem 3.1. For any given initial value (S(0), I(0), R(0)) ∈ R3
+, the SDE (1.3) has a unique global

positive solution with probability one, namely,

P{(S(t), I(t), R(t)) ∈ R3
+, ∀t ≥ 0} = 1.

Proof. Note that the coefficients of SDE (1.3) are locally Lipschitz continuous. By well known results
(see e.g., [33], [34], [36]), there is a unique local solution on [0, τe), where τe is the explosion time.

Let m0 ≥ 0 be sufficiently large such that S(0), I(0), R(0), all lie in the interval [m−1
0 ,m0]. For

each integer m ≥ m0, define the stopping time

τm = inf{t ∈ [0, τe) : min{S(t), I(t), R(t)} ≤ m−1 or max{S(t), I(t), R(t)} ≥ m}.

As usual, we set inf ∅ = ∞. Clearly, τm’s are increasing. Set τ∞ = lim
m→∞

τm, where 0 ≤ τ∞ ≤ τe a.e.

If we show that τ∞ = ∞ a.e., then τe = ∞ and the solution remains in R3
+ for all t ≥ 0, a.e. If this

statement is false, then there is a pair of constants T > 0 and ε ∈ (0, 1) such that

P{τ∞ ≤ T} > ε.

Hence there is an integer m1 ≥ m0 such that

P{τm ≤ T} ≥ ε for all m ≥ m1. (3.1)

Let x = (S, I,R), and define the C3-function V1 : R3
+ → R+ by

V1(x) = (S − a− a log
S

a
) + (I − 1− log I) + (R− 1− logR),
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where a is a positive constant to be determined later.
By Itô’s formula, we see

LV1(x) = λ− dSS − dII − dRR+ a

(
βI + dS −

λ

S
− γR

S

)
− βS − υI

R
+ dI + υ + dR + γ

+ a

N∑
j=1

(Iσ0j + σ1j)2 +
N∑
j=1

(Sσ0j − σ2j)2 + σ2
3.

(3.2)

Let aβ ≤ dI , then there exists a constant C1 such that

LV1(x) ≤ C1 + a

N∑
j=1

(Iσ0j + σ1j)2 +
N∑
j=1

(Sσ0j − σ2j)2.

Define a function V2 : R3
+ → R+ by

V2(x) = (S + I +R)2, x = (S, I,R).

Then

LV2(x) = 2(S + I +R)(λ− dSS − dII − dRR) +
N∑
j=1

(Sσ1j + Iσ2j +Rσ3j)2

≤ (S + I +R)2 + λ2 + (σ2
1 + σ2

2 + σ2
3)(S + I +R)2

≤ C2 + C3(S + I +R)2,

(3.3)

where C2, C3 are another positive constants.
Let V (x) = V1(x) + V2(x). By (3.2) and (3.3), there exists a positive constant C such that

LV (x) ≤ C + CV (x).

Let Ṽ (x, t) = e−Ct(1 + V (x)), then

LṼ (x) = −Ce−Ct(1 + V (x)) + e−CtLV (x) ≤ 0.

Let x(t) = (S(t), I(t), R(t)), t ≥ 0, by Itô’s formula, we have for any m ≥ m1

EṼ (x(t ∧ τm), t ∧ τm) = Ṽ (x(0)) + E

∫ t∧τm

0
LṼ (x(u), u)ds ≤ Ṽ (x(0)). (3.4)

Set Ωm = {τm ≤ T} and by (3.1), P{Ωm} ≥ ε. Note that for every ω ∈ Ωm, V (x(τm, ω)) ≥ bm :=
min{V (y)|y has a individual as m−1 or m} → ∞, as m→∞. It then follows from (3.4) that

εbm ≤ E[V (x(τm, ω)IΩm)] ≤ eCT Ṽ (x(0)).

Letting m→∞ leads to the contradiction

∞ > eCT Ṽ (x(0)) ≥ ∞.

Therefore τ∞ =∞, a.e., whence the proof is complete.
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4 Disease Extinction

In an epidemic model, the disease extinction or persistence are two of the most interesting and im-
portant issues. In this section, we will establish conditions for the disease extinction in the SDE SIRS
model (1.3) and discuss the disease persistence in the next section.

Lemma 4.1. Let N(t) = S(t)+I(t)+R(t), then there exists some p0 > 1 such that for any p ∈ (1, p0),

sup
n
E

(
max

t∈[n,n+1]
Np(t)

)
< +∞. (4.1)

Proof. Obviously, there exists some p0 > 1 such that for any p ∈ (1, p0),

Cp = pď− p(p− 1)σ2

2
> 0.

Note that

dN(t) = (λ− (dSS(t) + dII(t) + dRR(t)))dt−
N∑
j=1

(Sσ1j + Iσ2j +Rσ3j)dBj(t).

For any p > 1, we have

d
(
e0.5CptNp(t)

)
= e0.5Cpt

[
λpNp−1(t)− pNp−1(t)(dSS(t) + dII(t) + dRR(t))

+
p(p− 1)

2
Np−2(t)

N∑
j=1

(Sσ1j + Iσ2j +Rσ3j)2 + 0.5CpNp(u)

 dt+ dM(t),
(4.2)

where M(t) = −
∫ t

0 pN
p−1(u)e0.5Cpu

∑N
j=1(Sσ1j + Iσ2j +Rσ3j)dBj(t), t ≥ 0, is a local martingale.

Denote max{dS , dI , dR} and min{dS , dI , dR} by d̂ and ď, respectively. Then

E
(
e0.5CptNp(t)

)
≤ Np(0) + E

∫ t

0
e0.5Cpu

[
λpNp−1(u)− pďNp(u) +

p(p− 1)σ2

2
Np(u) + 0.5CpNp(u)

]
du

≤ Np(0) + E

∫ t

0
e0.5Cpu

[
λpNp−1(u)− 0.5CpNp(u)

]
dt.

Hence,

e0.5CptENp(t) ≤ Np(0) +
K

0.5Cp
e0.5Cpt,

where K = supx>0(λpxp−1 − 0.5Cpxp). This implies that for any p ∈ (1, p0),

sup
t≥0

ENp(t) ≤ Np(0) +
K

0.5Cp
< +∞. (4.3)

By (4.2), we have

max
t∈[n,n+1]

Np(t) ≤ Np(n) +
∫ n+1

n

[
λpNp−1(u)− CpNp(u)

]
dt+ max

t∈[n,n+1]
|M̃(t)|,
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where M̃(t) =
∫ t
n pN

p−1(u)
∑N

j=1(Sσ1j + Iσ2j +Rσ3j)dBj(t), t ∈ [n, n+ 1].
Therefore,

E

(
max

t∈[n,n+1]
Np(t)

)
≤ ENp(n) +

∫ n+1

n

[
λpENp−1(u) + CpEN

p(u)
]
dt+ E

(
max

t∈[n,n+1]
|M̃(t)|

)
.

By (4.3), there exists a positive constant C1 independent of n such that

E

(
max

t∈[n,n+1]
Np(t)

)
≤ C1 + E

(
max

t∈[n,n+1]
|M̃(t)|

)
. (4.4)

Since

M̃(t) = Np(t)−Np(n)−
∫ t

n

[
λpNp−1(u)− pNp−1(u)(dSS(u) + dII(u) + dRR(u))

+
p(p− 1)

2
Np−2(u)

N∑
j=1

(Sσ1j + Iσ2j +Rσ3j)2

 du.
Hence for some C2 > 0, we have

|M̃(t)| ≤ Np(t) +Np(n) + C2

∫ t

n

[
Np−1(u) +Np(u)

]
dt. (4.5)

For any p ∈ (1, p0), there exists p′ > 1 such that pp′ ∈ (1, p0) and the constants C3, C4 independent of
n, we have

E

(
max

t∈[n,n+1]
|M(t)|p′

)
≤ C3 max

t∈[n,n+1]
E|M(t)|p′

≤ C3E

[
Npp′(t) +Npp′(n) +

∫ n+1

n

[
N (p−1)p′(u) +Npp′(u)

]
dt

]
≤ C4,

where the first inequality is derived from the maximal inequality for martingales, the second by (4.5)
and Jensen’s inequality, and the last by (4.3).
By (4.4), we have

E

(
max

t∈[n,n+1]
Np(t)

)
≤ C1 +

(
E

(
max

t∈[n,n+1]
|M(t)|p′

))1/p′

< +∞,

whence the proof is complete.

Lemma 4.2. For any 1 ≤ j ≤ N ,

lim
T→∞

1
T

∫ T

0
S(t)dBj(t) = 0, lim

T→∞

1
T

∫ T

0
I(t)dBj(t) = 0, lim

T→∞

1
T

∫ T

0
R(t)dBj(t) = 0, a.e.
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Proof. Note that for any T ∈ [n, n+ 1),

1
T

∫ T

0
S(t)dBj(t) =

n

T
· 1
n

∫ n

0
S(t)dBj(t) +

1
T

∫ T

n
S(t)dBj(t).

Let xi =
∫ i
i−1 S(t)dBj(t), 1 ≤ i ≤ n. For some p ∈ (1, p0), by the B-D-G inequality, there exists some

C < +∞ such that

E|xi|p ≤ CE
(∫ i

i−1
S2(t)dt

)p/2
≤ CE

(
max

t∈[i−1,i]
Sp(t)

)
≤ C sup

n
E

(
max

t∈[n,n+1]
Np(t)

)
< +∞,

where the last inequality is derived from Lemma 4.1. Then

E

( ∞∑
i=1

(|xi|p|Fi−1)
ip

)
=
∞∑
i=1

E|xi|p

ip
<∞,

which implies
∞∑
i=1

(|xi|p|Fi−1)
ip

<∞. a.e.,

Thus, by Lemma 2.1,

lim
n→∞

1
n

∫ n

0
S(t)dBj(t) = 0, a.e. (4.6)

On the other hand, by Lemma 4.1 again, we have

∞∑
n=1

P
{

max
T∈[n,n+1]

1
T

∣∣∣∣∫ T

n
S(t)dBj(t)

∣∣∣∣ > ε

}

≤
∞∑
n=1

1
εpnp

E

∣∣∣∣ max
T∈[n,n+1]

∫ T

n
S(t)dBj(t)

∣∣∣∣p
≤ C

∞∑
n=1

1
np
E

(
max

t∈[n,n+1]
Sp(t)

)

≤ C

( ∞∑
n=1

1
np

)
sup
n
E

(
max

t∈[n,n+1]
Np(t)

)
< +∞.

Applying the well-known Borel-Cantelli lemma, we see

P
{

lim
n→∞

max
T∈[n,n+1]

1
T

∣∣∣∣∫ T

n
S(t)dBj(t)

∣∣∣∣ = 0
}

= 1. (4.7)

Taking (4.6) and (4.7) into account, we get

lim
T→∞

1
T

∫ T

0
S(t)dBj(t) = 0, a.e.

In the same way, we can prove the other assertions and hence the proof is complete.
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Lemma 4.3.

lim
T→∞

N(T )
T

= 0, a.e.

Proof. For any ε > 0, we have

∞∑
n=1

P
{

max
T∈[n,n+1]

N(T )
T

> ε

}
≤
∞∑
n=1

1
εpnp

E

(
max

t∈[n,n+1]
Np(t)

)
< +∞,

where the last inequality is derived from Lemma 4.1. Applying the Borel-Cantelli lemma, we see

P
{

lim
n→∞

max
T∈[n,n+1]

N(T )
T

= 0
}

= 1.

The proof is hence complete.

Theorem 4.1. If

λ
(
β +

∑n
j=1 σ0jσ2j

)
dS

(
dI + υ + σ2

2
2

) − λ2σ2
0

2d2
S

(
dI + υ + σ2

2
2

) < 1 and σ2
0 ≤

dS
λ

β +
n∑
j=1

σ0jσ2j

 ,

then for any initial value, the SDE (1.3) obeys

lim
T→∞

log I(T )
T

≤ λ

dS

β +
n∑
j=1

σ0jσ2j

− (dI + υ +
σ2

2

2

)
− λ2σ2

0

2d2
S

< 0, a.e. (4.8)

In other words, the disease decays exponentially with probability one.

Proof. By Itô’s formula, we have

log(I(T )) = log(I(0)) +
∫ T

0
f(x(t))dt+

N∑
j=1

σ0j

∫ T

0
S(t)dBj(t)−

N∑
j=1

σ2jBj(T ), (4.9)

where f(x) = βS − (dI + υ)− 1
2

∑N
j=1(Sσ0j − σ2j)2 for x = (S, I) ∈ R2

+.

Ñ(t) = S(t) +
dI
dS
I(t) +

dR
dS
R(t), x(t) = (S(t), I(t)) and y(t) =

dI
dS
I(t) +

dR
dS
R(t).

10



Then

f(x(t)) = βS(t)− (dI + υ)− 1
2
σ2

0S
2(t) +

N∑
j=1

σ0jσ2jS(t)− σ2
2

2

= β(Ñ(t)− y(t))−
(
dI + υ +

σ2
2

2

)
− 1

2
σ2

0(Ñ(t)− y(t))2 +
N∑
j=1

σ0jσ2j(Ñ(t)− y(t))

=

β +
N∑
j=1

σ0jσ2j

 Ñ(t)−

β +
N∑
j=1

σ0jσ2j

 y(t)−
(
dI + υ +

σ2
2

2

)

− σ2
0

2
Ñ2(t) + σ2

0Ñ(t)y(t)− σ2
0

2
y2(t)

=

β +
N∑
j=1

σ0jσ2j

 Ñ(t)−

β +
N∑
j=1

σ0jσ2j − εσ2
0

 y(t)−
(
dI + υ +

σ2
2

2

)

− σ2
0

2
Ñ2(t) + σ2

0(Ñ(t)− ε)y(t)− σ2
0

2
y2(t),

where ε > 0 is a constant sufficiently small for εσ2
0 ≤ β +

∑N
j=1 σ0jσ2j . Then

f(x(t)) ≤

β +
N∑
j=1

σ0jσ2j

 Ñ(t)−
(
dI + υ +

σ2
2

2

)
− σ2

0

2
Ñ2(t)

+
σ2

0

2
(Ñ(t)− ε)2 − σ2

0

2
(Ñ(t)− ε− y(t))2

≤

β +
N∑
j=1

σ0jσ2j − σ2
0ε

 Ñ(t)−
(
dI + υ +

σ2
2

2

)
+
ε2σ2

0

2
.

(4.10)

Recall that N(t) = S(t) + I(t) +R(t), then

dN(t) = (λ− dSÑ(t))dt+
N∑
j=1

(Sσ1j + Iσ2j +Rσ3j)dBj(t).

Thus, we see

N(T )−N(0)
T

= λ− dS
T

∫ T

0
Ñ(t)dt+

1
T

N∑
j=1

∫ T

0
(Sσ1j + Iσ2j +Rσ3j)dBj(t).

Let T →∞, Lemma 4.2 and Lemma 4.3 yields

1
T

∫ T

0
Ñ(t)dt =

λ

dS
, a.e.

Since Lemma 4.2 and Lemma 4.3 implies that limT→∞
1
T

∫ T
0 S(t)dBj(t) = limT→∞

Bj(T )
T = 0, a.e., by

(4.9), (4.10) and let ε = λ
dS

, we have

lim
T→∞

log I(T )
T

≤ λ

dS

β +
N∑
j=1

σ0jσ2j

− (dI + υ +
σ2

2

2

)
− λ2σ2

0

2d2
S

< 0.

11



The proof is hence complete.

Remark 4.1. In the deterministic model (1.1), λ is the rate of susceptible individuals recruited
into the population (either by birth or immigration) per unit time; β is some transmission coefficient
and it is assumed that the rate at which the susceptible individuals acquire the infection is proportional
to the number of encounters between the susceptible and infective individuals per unit time, being
βSI; dS is the natural mortality rate or the removal rate of the susceptible individual; dI is the removal
rate of infectious individual and may be the sum of the natural mortality rate and the disease mortality
rate; υ is the recovery rate of infective individual; dR is the removal rate of the recovered individual
and γ is the rate at which the recovered individual loses immunity. Thus, from the biological point
of view, 1

dS
is the average death age of the susceptible individual, that is, the average lifespan of the

susceptible individual; λ
dS

is the number of the susceptible population without infection during the
life span; 1

dI+υ is the mean infective period, or the mean course of infection. It is well-known that the
basic reproductive number R0 of the deterministic model (1.1) is just the product of the transmission
coefficient β per unit time, the number λ

dS
of when all of the individuals in the population are initially

susceptible and the mean infective period 1
dI+υ , which is actually the average number of secondary

infections produced by one infected individual during the mean course of infection in a completely
susceptible population and thus determines whether a disease persists or goes extinct.

Because of the existence of random fluctuations in the environment, we consider the stochastic
model (1.3) to investigate how the randomness affects the behavior of the disease transmission. By
Theorem 4.1, under some mild condition and

R0;σij :=
λ

dS
·

β +
N∑
j=1

σ0jσ2j −
λσ2

0

2dS

 · 1

dI + υ + σ2
2
2

=
λ
(
β +

∑N
j=1 σ0jσ2j

)
dS

(
dI + υ + σ2

2
2

) − λ2σ2
0

2d2
S

(
dI + υ + σ2

2
2

)
< 1,

we obtain

lim
T→∞

log I(T )
T

≤ λ

dS

β +
N∑
j=1

σ0jσ2j

− (dI + υ +
σ2

2

2

)
− σ2

0

2

(
λ

dS

)2

=
(
dI + υ +

σ2
2

2

)
(R0;σij − 1)

< 0, a.e.

That is, in the stochastic model (1.3), the random fluctuations have their effect on the transmission
of infectious diseases. Note also that under the condition of Theorem 4.1, the average number of
secondary infections in the stochastic model is less than 1 which implies that the disease dies out
eventually.

Theorem 4.2. Under the conditions of Theorem 4.1, the susceptible class S(t) of the SDE (1.3)
converges weakly to an inverse-gamma distribution ν, which is the distribution of the reciprocal of a

12



gamma distribution with shape parameter 2dS

σ2
1

+ 1 and scale parameter σ2
1

2λ . Moreover, we have

lim
T→∞

1
T

∫ T

0
S(t)dt =

λ

dS
, a.e.

Furthermore, if dS >
σ2
1
2 , then

lim
T→∞

1
T

∫ T

0

(
S(t)− λ

dS

)2

dt =
σ2

1

2dS − σ2
1

(
λ

dS

)2

, a.e.

Proof. In the same way as Theorem 4.1 was proved, we can show that

lim sup
T→∞

1
T

logR(T ) ≤ −
(
dR + γ +

σ2
3

2

)
< 0, a.e. (4.11)

Recall that N(t) = S(t) + I(t) +R(t), t ≥ 0 and

dN(t) = (λ− dSN(t) + f(t)) dt+
N∑
j=1

(σ1jN(t) + gj(t))dBj(t),

where f(t) = (dS − dI)I(t) + (dS − dR)R(t) and gj(t) = (σ2j − σ1j)I(t) + (σ3j − σ1j)R(t) for any
t ≥ 0, 1 ≤ j ≤ N . Applying Theorem 3.1 in [35] again,

N(T ) = Φ̃(T )

N(0) +
∫ T

0
Φ̃−1(t)

λ+ f(t)−
N∑
j=1

σ1jgj(t)

 dt+
N∑
j=1

∫ T

0
Φ̃−1(t)gj(t)dBj(t)

 ,

where Φ̃(t) = exp
{
−
(
dS + σ2

1
2

)
t−
∑N

j=1 σ1jBj(t)
}

, t ≥ 0.
Using (4.8) and (4.11), it is easy to show

lim
T→∞

Φ̃(T )
∫ T

0
Φ̃−1(t)

f(t)−
N∑
j=1

σ1jgj(t)

 dt = 0.

On the other hand, note that limT→∞ Φ̃−1(T ) =∞ and by (4.8), (4.11) again,∫ ∞
0

(Φ̃−1(t))2g2
j (t)

(1 + Φ̃−1(t))2
dt <∞, a.e., 1 ≤ j ≤ N.

Thus Theorem 3.4 in [35] yields

lim
T→∞

Φ̃(T )

 N∑
j=1

∫ T

0
Φ̃−1(t)gj(t)dBj(t)

 = 0, a.e.

Therefore

N(T ) = Φ̃(T )
(
N(0) +

∫ T

0
λΦ̃−1(t)dt

)
+ o(1), a.e.,

13



where o(1)→ 0, a.e. as T →∞. On the other hand, since limT→∞ I(t) = limT→∞R(t) = 0, a.e.,

S(T ) = Φ̃(T )
(
N(0) +

∫ T

0
λΦ̃−1(t)dt

)
+ o(1), a.e. (4.12)

Let X(t) be the solution of the following lienar SDE

dX(t) = (λ− dSX(t)) dt+X(t)
N∑
j=1

σ1jdBj(t), X(0) = N(0). (4.13)

By Theorem 3.1 in [35], X(t) can be expressed as

X(t) = Φ̃(T )
(
N(0) +

∫ T

0
λΦ̃−1(t)dt

)
.

Thus (4.12) yields
lim
T→∞

(S(T )−X(T )) = 0, a.e. (4.14)

Assume that {B(t), t ≥ 0} is a standard Brownian motion. Since the processes {
∑N

j=1 σ1jBj(t), t ≥ 0}
and {σ1B(t), t ≥ 0} are equivalent in distribution, we may replace

∑N
j=1 σ1jdBj(t) by σ1dB(t) in the

SDE (4.13). Let Y (t) = X(t)− λ
dS

, then Y (t) satisfies

dY = −dSY dt+ σ1

(
Y +

λ

dS

)
dB(t). (4.15)

Theorem 2.1 (a) in [7] with C = 1 implies that Y (t) is stable in distribution, so does X(t). Let
q(x) = exp

(
−2
∫ x

1
λ−dSy
σ2
1y

2 dy
)

. We have∫ ∞
1

q(x)dx =∞,
∫ 1

0
q(x)dx =∞,

∫ ∞
0

dx

σ2
1q(x)x2

<∞.

SoX(t) is ergodic (Theorem 1.16 in [27]), and its unique invariant distribution ν has density (Mx2p(x))−1,
where p(x) = exp

(
2λ
σ2
1x

+ 2dS

σ2
1

lnx
)
, x > 0, M is a normal constant. By computation, ν is an inverse-

gamma distribution, which is the reciprocal of a gamma distribution with shape parameter 2dS

σ2
1

+1 and

scale parameter σ2
1

2λ . It is clear that the stability in distribution implies that the limiting distribution
is just the invariant distribution. Therefore, X(t) converges weakly to ν as t → ∞. By (4.14), we
conclude that S(t) converges weakly to ν, too.
Note that

N(T )
T

=
N(0)
T

+ λ− dS
T

∫ T

0
S(t)dt− dI

T

∫ T

0
I(t)dt− dR

T

∫ T

0
R(t)dt

−
N∑
j=1

∫ T

0
(σijS(t) + σ2jI(t) + σ3jR(t))dBj(t).

Under the conditions of Theorem 4.1, we get

lim
T→∞

1
T

∫ T

0
I(t)dt = 0, lim

T→∞

1
T

∫ T

0
R(t)dt = 0, a.e.,

14



which, together with Lemma 4.2 and Lemma 4.3, yields

lim
T→∞

1
T

∫ T

0
S(t)dt =

λ

dS
, a.e.

Write

1
T

∫ T

0
S2(t)dt =

1
T

∫ T

0
(S(t)−X(t))2dt+

2
T

∫ T

0
(S(t)−X(t))X(t)dt+

1
T

∫ T

0
X2(t)dt.

By (4.14) and limT→∞
1
T

∫ T
0 X(t)dt = λ

dS
, we have

lim
T→∞

1
T

∫ T

0
(S(t)−X(t))2dt = lim

T→∞

1
T

∫ T

0
(S(t)−X(t))X(t)dt = 0, a.e.,

which implies

lim
T→∞

(
1
T

∫ T

0
S2(t)dt− 1

T

∫ T

0
X2(t)dt

)
= 0, a.e.

Therefore,

lim
T→∞

(
1
T

∫ T

0

(
S(t)− λ

dS

)2

dt− 1
T

∫ T

0

(
X(t)− λ

dS

)2

dt

)
= 0, a.e.

Applying Itô’s formula to
(
X(t)− λ

dS

)2
, we get

1
2T

(
X(T )− λ

dS

)2

=
σ2

1

2

(
λ

dS

)2

+
λσ2

1

dST

∫ T

0

(
X(t)− λ

dS

)
dt

−
(
dS −

σ2
1

2

)
1
T

∫ T

0

(
X(t)− λ

dS

)2

dt+
σ1

T

∫ T

0
X(t)

(
X(t)− λ

dS

)
dB(t),

(4.16)

If dS >
σ2
1
2 , in the same way as Lemmas 4.1, 4.2 and 4.3 were proved, we can show

lim
T→∞

1
T

(
X(T )− λ

dS

)2

= 0, lim
T→∞

1
T

∫ T

0
X(t)

(
X(t)− λ

dS

)
dB(t) = 0, a.e.

Let T →∞ in (4.16), we get

lim
T→∞

1
T

∫ T

0

(
X(t)− λ

dS

)2

dt =
σ2

1

2dS − σ2
1

(
λ

dS

)2

, a.e.

This completes the proof.

Example 4.1. As a slightly more realistic example to illustrate our analytical results, we introduce an
SIRS model which is used to investigate the dynamics of Pasteurella muris in colonies of laboratory
mice (see [4]). We choose parameters from p362 and p363 in [4]. That is, λ = 0.33, and the other
parameters are:

Parameter β dS dR dI ν γ

Value/day 0.0056 0.006 0.006 0.0066 0.04 0.0021
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Fig.1

Fig.2

To see the effect of random fluctuations,we consider the following diffusion coefficient matrix

σ =


0.01 0 0 0
0 0.001 0 0
0 0 0.5 0
0 0 0 0.1

 .

Note that in the deterministic model, R0 = 2.9057. Hence, the infectious disease will persist in the
deterministic model. For the stochastic model, it is easy to check that the conditions of Theorem 4.1
are satisfied and the infectious disease will eventually become extinctive due to the effect of random
fluctuations. In Fig.1, the red, blue and green lines represent the susceptible, the infective and the
recovered individuals, respectively. It is seen that the infective and the recovered individuals are forced
to expire. The following table shows sample means and variances at different time which are very close
to our theoretical results in Theorem 4.2.

Time point 20 40 60 80 100
Sample mean 57.1999 56.1885 55.1778 55.2005 55.1588
Sample variance 0.0356 0.0318 0.0257 0.0285 0.0233

To verify the density function of the stationary distribution ν, we use software R to get an
estimate for the kernel densities of ν and S(t), respectively. In Fig.2 and Fig.3, these histograms of
kernel densities look alike, and thus confirm our analytical results.

5 Ergodicity

In this section, we discuss the persistence of the SDE (1.3) by the ergodic property of Markov processes.

Theorem 5.1. If the matrix (σkj)0≤k≤3,1≤j≤N has its full row rank, R0 > 1, ď := min{dS , dI , dR} >
6σ2 and(

dS +
γdS

dS + dR
− C1

)
S∗2

∧(
γdI

dS + dR
− C2

)
I∗2
∧(

γ(dI + dR)(dR + γ)
υ(dS + dR)

+
γdR

dS + dR
− C3

)
R∗2

>

(
γ(dS + dI)
β(dS + dR)

+
dI + υ

β

)
σ2

2I
∗ + C1S

∗2 + C2I
∗2 + C3R

∗2 +
λ4σ2

0

ď3(ď− 6σ2)
,

(5.1)
where (S∗, I∗, R∗) is the endemic equilibrium of (1.1), C1 = 2

(
γ(dS+dI)
β(dS+dR) + dI+υ

β

)
I∗σ2

0 + γσ2

dS+dR
+ 2σ2

1,

C2 = γσ2

dS+dR
, C3 = γσ2

dS+dR
+ γ(dI+dR)

υ(dS+dR)σ
2
3, then the solution of the SDE (1.3) is an ergodic and positive

recurrent Markov process.

Fig.3
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Proof. Note that the diffusion coefficient g(x) of the SDE (1.3) is defined by

g(x) = (gij(x)), 1 ≤ i ≤ 3, 1 ≤ j ≤ N, x = (S, I,R)τ ∈ R3
+,

where g1j(x) = −SIσ0j − Sσ1j , g2j(x) = SIσ0j − Iσ2j , g3j(x) = −Rσ3j , 1 ≤ j ≤ N .
If the matrix (σkj)0≤k≤3,1≤j≤N has the full row rank, then rank(g(x)) = 3 and thus A(x) := g(x)gτ (x)
is positive definite in R3

+. Since g(x) is continuous in x, A(x) is uniformly elliptical in any compact
set K ⊂ R3

+.
By Lemma 2.2 and its remark, it suffices to find a positive Lyapunov function V (x) and a compact

set K ⊂ R3
+ such that LV (x) ≤ −C for some C > 0 and x ∈ R3

+/K.
When R0 > 1, there exists unique positive equilibrium (S∗, I∗, R∗) of (1.1) such that

λ+ γR∗ = βS∗I∗ + dSS
∗, βS∗ = dI + υ, υI∗ = (dR + γ)R∗. (5.2)

For x = (S, I,R)τ ∈ R3
+, we define a Lyapunov function V1 by

V1(x) = I − I∗ − I∗ log
I

I∗
= I∗

(
I

I∗
− 1− log

I

I∗

)
> 0.

Itô’s formula and (5.2) yield

LV1(x) = (I − I∗)(βS − dI − υ) +
I∗

2

N∑
j=1

(σ0jS − σ2j)2

= β(I − I∗)(S − S∗) +
σ2

0I
∗

2
S2 − SI∗

N∑
j=1

σ0jσ2j +
σ2

2I
∗

2

≤ β(I − I∗)(S − S∗) + σ2
0I
∗S2 + σ2

2I
∗.

Define V2 by

V2(x) =
1
2

(R−R∗)2.

Then by (5.2) we compute

LV2(x) = (R−R∗)(υI − (dR + γ)R) +
σ2

3

2
R2

= υ(R−R∗)(I − I∗)− (dR + γ)(R−R∗)2 +
σ2

3

2
R2.

Define V3 by

V3(x) =
1
2

(S − S∗ + I − I∗ +R−R∗)2.

Then applying Itô’s formula and (5.2) again, we get

LV3(x) = (S − S∗ + I − I∗ +R−R∗)(λ− dSS − dII − dRR) +
1
2

N∑
j=1

(σ1jS + σ2jI + σ3jR)2

≤ (S − S∗ + I − I∗ +R−R∗)(λ− dSS − dII − dRR) +
1
2

(S2 + I2 +R2)(σ2
1 + σ2

2 + σ2
3)

≤ −dS(S − S∗)2 − dI(I − I∗)2 − dR(R−R∗)2 +
σ2

2
(S2 + I2 +R2)

− (dS + dI)(S − S∗)(I − I∗)− (dS + dR)(S − S∗)(R−R∗)− (dI + dR)(I − I∗)(R−R∗).
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Define V4 by

V4(x) =
1
2

(S − S∗)2.

Then

LV4(x) = (S − S∗)(λ− βSI − dSS + γR) +
1
2

N∑
j=1

(σ0jSI + σ1jS)2

= −dS(S − S∗)2 − β(S − S∗)(SI − S∗I∗) + γ(S − S∗)(R−R∗) +
1
2

N∑
j=1

(σ0jSI + σ1jS)2

≤ −dS(S − S∗)2 − βS∗(S − S∗)(I − I∗)− β(S − S∗)2I + γ(S − S∗)(R−R∗) + σ2
0S

2I2 + σ2
1S

2

≤ −dS(S − S∗)2 − βS∗(S − S∗)(I − I∗) + γ(S − S∗)(R−R∗) + σ2
0S

2I2 + σ2
1S

2

Define V5 by

V5(x) =
1
4

(S + I +R)4.

We compute

LV5(x) = (S + I +R)3(λ− dSS − dII − dRR) +
3
2

(S + I +R)2
N∑
j=1

(σ1jS + σ2jI + σ3jR)2

≤ λ(S + I +R)3 − ď(S + I +R)4 +
3σ2

2
(S + I +R)4,

where ď = min{dS , dI , dR}. Applying Young’s inequality, we get

λ(S + I +R)3 ≤ λ4

4ď3
+

3ď
4

(S + I +R)4,

which yields

LV5(x) ≤ λ4

4ď3
−
(
ď

4
− 3σ2

2

)
(S + I +R)4.

At last, we consider

V (x) =
(
γ(dS + dI)
β(dS + dR)

+
dI + υ

β

)
V1 +

γ(dI + dR)
υ(dS + dR)

V2 +
γ

dS + dR
V3 + V4 +

4σ2
0

ď− 6σ2
V5.
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Applying Itô’s formula and (5.2), we get

LV (x) ≤ −
(
dS +

γdS
dS + dR

)
(S − S∗)2 − γdI

dS + dR
(I − I∗)2 −

(
γ(dI + dR)(dR + γ)

υ(dS + dR)
+

γdR
dS + dR

)
(R−R∗)2

+
(
γ(dS + dI)
β(dS + dR)

+
dI + υ

β

)
σ2

0I
∗S2 +

(
γ(dS + dI)
β(dS + dR)

+
dI + υ

β

)
σ2

2I
∗ +

σ2
3

2
γ(dI + dR)
υ(dS + dR)

R2

+
γσ2

2(dS + dR)
(S2 + I2 +R2) + σ2

1S
2 + σ2

0S
2I2 +

λ4σ2
0

ď3(ď− 6σ2)
− σ2

0(S + I +R)4

≤ −
(
dS +

γdS
dS + dR

− C1

)
(S − S∗)2 −

(
γdI

dS + dR
− C2

)
(I − I∗)2

−
(
γ(dI + dR)(dR + γ)

υ(dS + dR)
+

γdR
dS + dR

− C3

)
(R−R∗)2

+
(
γ(dS + dI)
β(dS + dR)

+
dI + υ

β

)
σ2

2I
∗ + C1S

∗2 + C2I
∗2 + C3R

∗2 +
λ4σ2

0

ď3(ď− 6σ2)
.

If (5.1) holds, then the episode(
dS +

γdS
dS + dR

− C1

)
(S − S∗)2 +

(
γdI

dS + dR
− C2

)
(I − I∗)2

+
(
γ(dI + dR)(dR + γ)

υ(dS + dR)
+

γdR
dS + dR

− C3

)
(R−R∗)2

=
(
γ(dS + dI)
β(dS + dR)

+
dI + υ

β

)
σ2

2I
∗ + C1S

∗2 + C2I
∗2 + C3R

∗2 +
λ4σ2

0

ď3(ď− 6σ2)

lies in the positive zone of R3 and thus there exists a positive constant ε > 0 and a compact set K of
R3

+ such that for any x ∈ R3
+/K,(

dS +
γdS

dS + dR
− C1

)
(S − S∗)2 +

(
γdI

dS + dR
− C2

)
(I − I∗)2

+
(
γ(dI + dR)(dR + γ)

υ(dS + dR)
+

γdR
dS + dR

− C3

)
(R−R∗)2

≥
(
γ(dS + dI)
β(dS + dR)

+
dI + υ

β

)
σ2

2I
∗ + C1S

∗2 + C2I
∗2 + C3R

∗2 +
λ4σ2

0

ď3(ď− 6σ2)
+ ε.

Hence for any x ∈ R3
+/K,

LV (x) ≤ −ε < 0.

Applying Lemma 2.2, we prove the ergodic property and the positive persistence of the SDE (1.3)
whence the proof is complete.

Theorem 5.2. Under the conditions of Theorem 5.1, let µ denote the stationary distribution of the
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SDE (1.3). Then we have

dS

∫
R3

+

xµ(dx, dy, dz) +
(
dI +

υdR
dR + γ

)∫
R3

+

yµ(dx, dy, dz) = λ,

υ

∫
R3

+

yµ(dx, dy, dz) = (dR + γ)
∫
R3

+

zµ(dx, dy, dz),β +
N∑
j=1

σ0jσ2j

∫
R3

+

xµ(dx, dy, dz)− σ2
0

2

∫
R3

+

x2µ(dx, dy, dz) = dI + υ +
σ2

2

2
.

Proof. Consider

N(T )−N(0)
T

= λ− dS
T

∫ T

0
S(t)dt− dI

T

∫ T

0
I(t)dt− dR

T

∫ T

0
R(t)dt

+
1
T

N∑
j=1

∫ T

0
(σ0jS(t) + σ1jI(t) + σ3jR(t))dBj(t).

Let T →∞, by ergodic theorem and Lemma 4.2, 4.3, we have

dS

∫
R3

+

xµ(dx, dy, dz) + dI

∫
R3

+

yµ(dx, dy, dz) + dR

∫
R3

+

zµ(dx, dy, dz) = λ. (5.3)

Similarly, by

R(T )−R(0)
T

=
υ

T

∫ T

0
I(t)dt− dR + γ

T

∫ T

0
R(t)dt+

1
T

N∑
j=1

σ3j

∫ T

0
R(t)dBj(t),

we have
υ

∫
R3

+

yµ(dx, dy, dz) = (dR + γ)
∫
R3

+

zµ(dx, dy, dz), (5.4)

which, together with (5.3), yields,

dS

∫
R3

+

xµ(dx, dy, dz) +
(
dI +

υdR
dR + γ

)∫
R3

+

yµ(dx, dy, dz) = λ.

Applying Itô’s formula to log I(t), yields

log I(T )− log I(0)
T

=

β +
N∑
j=1

σ0jσ2j

 1
T

∫ T

0
S(t)dt− σ2

0

2T

∫ T

0
S2(t)dt

−
(
dI + υ +

σ2
2

2

)
+

1
T

N∑
j=1

∫ T

0
(σ0jS(t)− σ1j)dBj(t).

By the ergodic theorem again, we get limT→∞
log I(T )

T exists, a.e. Now, we claim that limT→∞
log I(T )

T =
0, a.e. If this statement is false, then limT→∞

log I(T )
T > 0 or limT→∞

log I(T )
T < 0, a.e. This means

20



that limT→∞ I(T ) = ∞ or 0, a.e., which contradicts the conclusion of the weak convergence to the
invariant distribution µ lying in R3

+. Therefore, we have

lim
T→∞

log I(T )
T

= 0, a.e.

and hence β +
N∑
j=1

σ0jσ2j

∫
R3

+

xµ(dx, dy, dz)− σ2
0

2

∫
R3

+

x2µ(dx, dy, dz) = dI + υ +
σ2

2

2
,

whence the proof is complete.

6 Conclusions

Stochastic epidemic models have been studied by many authors, see e.g., [1, 3, 8, 37, 39]. In this paper,
we impose the stochasticity on the disease transmission coefficient β and the removal rates dS , dI , dR
of deterministic model (1.1). If only consider the perturbation of β, then N(t) = S(t) + I(t) + R(t)
is uniformly bounded, and some papers, see e.g. [15], [30], [47] and their references, mainly study its
extinction, but there are few papers concerned on its ergodic property. If the removal rates are also
effected by noise, which may happen in the real world, N(t) is unbounded even if the noise is small. In
such a case, we adapt Chow’s approach ([16]) and the moment estimate to establish the conditions for
extinction of infective population. Furthermore, we construct new stochastic Lyapunov functions to
study the ergodic property of the SDE (1.3). When the deterministic model has endemic equilibrium,
under some mild conditions, we prove that the SDE (1.3) is ergodic. In such a case, by ergodic theory,
the average of solution converges to the mean of the stationary distribution as the time goes by.
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