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Abstract

In this paper we are concerned with the mean-square exponential stabilization of continuous-time hybrid stochastic differen-
tial equations (also known as stochastic differential equations with Markovian switching) by discrete-time feedback controls.
Although the stabilization by continuous-time feedback controls for such equations has been discussed by several authors (see
e.g. [9,15,17,25,26]), there is so far no result on the stabilization by discrete-time feedback controls. Our aim here is to initiate
the study in this area by establishing some new results.
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1 Introduction

One of the important issues in the study of hybrid
stochastic differential equations (SDEs) is the auto-
matic control, with subsequent emphasis being placed
on the analysis of stability [3,9,19,16,17,21–24,27]. In
particular, [13,14] are two of most cited papers (Google
citations 412 and 251,respectively) while [18] is the first
book in this area (Google citation 424). This paper is
concerned with the mean-square exponential stabiliza-
tion of the hybrid Itô SDEs by discrete-time feedback
controls. Throughout this paper the SEDs are in the Itô
sense and we will not mention this any more. The stabi-
lization by continuous-time (regular) feedback controls
for such equations has been discussed by several authors
e.g. [9,15,17,25,26]. Here, given an unstable hybrid SDE
in the form of (1) with u = 0, it is required to find a
feedback control u(x(t), r(t), t), based on the current
state, so that the controlled system

dx(t) =
(
f(x(t), r(t), t) + u(x(t), r(t), t)

)
dt

+ g(x(t), r(t), t)dw(t) (1)

becomes stable. Here x(t) ∈ Rn is the state, w(t) =
(w1(t), · · · , wm(t))T is an m-dimensional Brownian mo-
tion and r(t) is a Markov chain (please see Section 2 for
the formal definitions). Moreover, the control u is Rn-
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valued and, in practice, some of its components are set
to be zero if the corresponding components of dx(t) are
not affected by u. Such a continuous-time feedback con-
trol requires continuous observation of the state x(t) for
all time t ≥ 0. However, it is more realistic and costs
less in practice if the state is only observed at discrete
times, say 0, τ, 2τ, · · · , where τ > 0 is the duration
between two consecutive observations [6]. Accordingly,
the feedback control should be designed based on these
discrete-time observations, namely the feedback control
should be of the form u(x([t/τ ]τ), r(t), t), where [t/τ ] is
the integer part of t/τ . Hence, the stabilization prob-
lem becomes to design a discrete-time feedback control
u(x([t/τ ]τ), r(t), t) in the drift part so that the controlled
system

dx(t) =
(
f(x(t), r(t), t) + u(x([t/τ ]τ), r(t), t)

)
dt

+ g(x(t), r(t), t)dw(t) (2)

becomes stable. To the best knowledge of the author,
there is so far no result on this stabilization problem
by discrete-time feedback controls, although the cor-
responding problem for the deterministic differential
equations has been studied by many authors (see e.g.
[1,4,5,7,8]). Our aim here is to initiate the study in
this area by establishing some new results. To address
the mean-square exponential stability of the controlled
system (2), we will relate it with the continuous-time
controlled SDE (1). We will show that if the SDE
(1) is mean-square exponentially stable, then so is
the discrete-time controlled system (2) provided τ is
sufficiently small. But the stabilization problem (1)
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has already been discussed by several authors e.g.
[9,15,17,25,26], though the theory could be developed
further. In other words, our new theory enables us to
transfer our discrete-time controlled problem into the
classical (or regular) continuous-time controlled prob-
lem. Let us begin to establish our new theory.

2 Notation and Stabilization Problem

Throughout this paper, unless otherwise specified, we let
(Ω,F , {Ft}t≥0,P) be a complete probability space with
a filtration {Ft}t≥0 satisfying the usual conditions (i.e.
it is right continuous and F0 contains all P-null sets).
Let w(t) = (w1(t), · · · , wm(t))T be an m-dimensional
Brownian motion defined on the probability space. If A
is a vector or matrix, its transpose is denoted by AT . If
x ∈ Rn, then |x| is its Euclidean norm. If A is a ma-
trix, we let |A| =

√
trace(ATA) be its trace norm and

‖A‖ = max{|Ax| : |x| = 1} be the operator norm. If
A is a systematic matrix (A = AT ), denote by λmin(A)
and λmax(A) its smallest and largest eigenvalue, respec-
tively. By A ≤ 0 and A < 0, we mean A is non-negative
and negative definite, respectively. Denote by L2

Ft
(Rn)

the family of all Ft-measurable Rn-valued random vari-
ables ξ such that E|ξ|2 < ∞. If both a, b are real num-
bers, then a ∨ b = min{a, b} and a ∧ b = max{a, b}. Let
r(t), t ≥ 0, be a right-continuous Markov chain on the
probability space taking values in a finite state space
S = {1, 2, · · · , N} with the generator Γ = (γij)N×N .
We assume that the Markov chain r(·) is independent of
the Brownian motion w(·). Consider an n-dimensional
controlled hybrid SDE

dx(t) =
(
f(x(t), r(t), t) + u(x(δ(t, t0, τ)), r(t), t)

)
dt

+ g(x(t), r(t), t)dw(t) (3)

on t ≥ t0, with initial data x(t0) = x0 ∈ L2
Ft0

(Rn) and
r(t0) = r0 ∈MFt0

(S) at time t0 ≥ 0. Here τ > 0 and

δ(t, t0, τ) = t0 + [(t− t0)/τ ]τ, (4)

in which [(t − t0)/τ ] is the integer part of (t − t0)/τ .
Our aim here is to design the feedback control
u(x(δ(t, t0, τ)), r(t), t) so that this controlled hybrid
SDE becomes mean-square exponentially stable, though
the given uncontrolled system (3) with u = 0 may
not be stable. We observe that the feedback control
u(x(δ(t, t0, τ)), r(t), t) is designed based on the discrete-
time state observations x(t0), x(t0 + τ), x(t0 + 2τ), · · · ,
though the given hybrid SDE (3) with u = 0 is of
continuous-time. In this paper we impose the following
standing hypothesis.

Assumption 2.1 Assume that there are positive con-

stants K1,K2,K3 such that

|f(x, i, t)− f(y, i, t)| ≤ K1|x− y|,
|u(x, i, t)− u(y, i, t)| ≤ K2|x− y|, (5)
|g(x, i, t)− g(y, i, t)| ≤ K3|x− y|

for all (x, y, i, t) ∈ Rn ×Rn × S ×R+. Moreover,

f(0, i, t) = 0, u(0, i, t) = 0, g(0, i, t) = 0 (6)

for all (i, t) ∈ S ×R+.

It should be pointed out that condition (6) is for the
stability purpose of this paper and condition (5) is
for the existence and uniqueness of the solution (see
e.g.[10,11,18,20]). We also see that these conditions
imply the following linear growth condition

|f | ≤ K1|x|, |u| ≤ K2|x|, |g| ≤ K3|x| (7)

for all (x, i, t) ∈ Rn×S×R+. We also observe that equa-
tion (3) is in fact a stochastic differential delay equation
(SDDE) with a bounded variable delay. Indeed, if we de-
fine the bounded variable delay ζ : [t0,∞)→ [0, τ ] by

ζ(t) = t− (t0 + kτ) for t0 + kτ ≤ t < t0 + (k + 1)τ,

for k = 0, 1, 2, · · · , then equation (3) can be written as

dx(t) =
(
f(x(t), r(t), t) + u(x(t− ζ(t)), r(t), t)

)
dt

+ g(x(t), r(t), t)dw(t). (8)

It is therefore known (see e.g. [18]) that under Assump-
tion 2.1, equation (3) has a unique solution x(t) such that
E|x(t)|2 <∞ for all t ≥ t0. To emphasize the role of the
initial data, we will denote the solution by x(t;x0, r0, t0)
and the Markov chain by r(t; r0, t0). As equation (3) is a
delay SDE, the pair (x(t;x0, r0, t0), r(t; r0, t0)) is in gen-
eral not a Markov process. However, due to the special
feature of equation (3), the pair has its Markov prop-
erty at the discrete times t0 + kτ (k ≥ 0). In fact, given
(x(t0 + kτ ;x0, r0, t0), r(t0 + kτ ; r0, t0)) at time t0 + kτ ,
the process (x(t;x0, r0, t0), r(t; r0, t0)) is uniquely deter-
mined for all t ≥ t0 + kτ but how it reaches (x(t0 +
kτ ;x0, r0, t0), r(t0 +kτ ; r0, t0)) from (x0, r0) is of no use.
The process also has its flow property at the discrete
times, namely

(x(t;x0, r0, t0), r(t; r0, t0))
=(x(t;x(t0 + kτ), r(t0 + kτ), t0 + kτ),
r(t; r(t0 + kτ), t0 + kτ)), (9)

for all t ≥ t0+kτ , where x(t0+kτ) = x(t0+kτ ;x0, r0, t0)
and r(t0 + kτ) = r(t0 + kτ ; r0, t0).
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Let us now consider the auxiliary controlled hybrid SDE

dy(t) =
(
f(y(t), r(t), t) + u(y(t), r(t), t)

)
dt

+ g(y(t), r(t), t)dw(t) (10)

on t ≥ t0, with initial data y(t0) = x0 ∈ L2
Ft0

(Rn) and
r(t0) = r0 ∈MFt0

(S) at time t0 ≥ 0. The difference be-
tween this SDE and the original SDE (3) is that the feed-
back control here is based on the continuous-time state
observation y(t). It is known (see e.g. [18]) that under
Assumption 2.1, equation (10) has a unique solution, de-
noted by y(t;x0, r0, t0) such that E|y(t;x0, r0, t0)|2 <∞
for all t ≥ t0. Assume that we know how to design the
control function u : Rn×S×R+ → Rn for this auxiliary
controlled hybrid SDE to be mean-square exponentially
stable. (The techniques developed in [9,15,17,25,26], for
example, can be used to design the control function u
and we will illustrate this in Section 4 below.) We will
then show that this same control function also makes
the original discrete-time controlled system (3) to be
mean-square exponentially stable as long as τ is suffi-
ciently small (namely we make state observations fre-
quently enough). We therefore assume in this paper that
this auxiliary controlled hybrid SDE (10) is mean-square
exponentially stable. To be precise, let us state it as an
assumption.

Assumption 2.2 Assume that there is a pair of positive
constants M and γ such that the solution of the auxiliary
controlled hybrid SDE (10) satisfies

E|y(t;x0, r0, t0)|2 ≤ME|x0|2e−γ(t−t0) ∀t ≥ t0 (11)

for all t0 ≥ 0, x0 ∈ L2
Ft0

(Rn) and r0 ∈MFt0
(S).

We can now state our main result.

3 Main Result

Theorem 3.1 Let Assumptions 2.1 and 2.2 hold. Let
τ∗ > 0 be the unique root to the equation

K̄(τ∗)(4M)(2K1+3K2+K2
3 )/γ = 1

2 , (12)

where

K̄(τ) =
K2Mτ

γ
[4τ(K2

1 +K2
2 ) + 2K2

3 ]e(γ+2K1+3K2+K2
3 )τ .

(13)

If τ < τ∗, then there is a pair of positive constants M̄
and λ such that the solution of the controlled hybrid SDE
(3) satisfies

E|x(t;x0, r0, t0)|2 ≤ M̄E|x0|2e−λ(t−t0) ∀t ≥ t0 (14)

for all t0 ≥ 0, x0 ∈ L2
Ft0

(Rn) and r0 ∈MFt0
(S).

To prove this theorem, let us present a lemma but we
omit the proof as it is quite standard (see e.g. [12]).

Lemma 3.2 Let Assumptions 2.1 and 2.2 hold. For any
initial data x0, r0, t0, write x(t;x0, r0, t0) = x(t) and
y(t;x0, r0, t0) = y(t). Then, for all t ≥ t0,

E|x(t)− y(t)|2 ≤ K(τ)E|x0|2e(2K1+3K2+K2
3 )(t−t0),

(15)

where K(τ) = K2Mτeγτ [4τ(K2
1 +K2

2 ) + 2K2
3 ]/γ.

Proof of Theorem 3.1. Fix initial data x0, r0, t0 arbitrar-
ily and write x(t;x0, r0, t0) = x(t) and r(t; r0, t0) = r(t)
simply. For k = 0, 1, 2, · · · , we write t0 + kτ = tk,
x(t0 + kτ) = xk and r(t0 + kτ) = rk. Recalling the flow
property (9), we see that

x(t) = x(t;xk, rk, tk) ∀t ≥ tk. (16)

In other words, when t ≥ tk, we may regard x(t) as the
solution of the SDE (3) with initial data x(tk) = xk and
r(tk) = rk at time tk. Let us choose a positive integer k̄
such that

log(4M)
γτ

≤ k̄ < log(4M)
γτ

+ 1. (17)

So

2Me−γk̄τ ≤ 1
2 . (18)

For i = 0, 1, 2, · · · , let y(i+1)k̄ = y((i+ 1)k̄;xik̄, rik̄, tik̄).
By Assumption 2.2 and (18), we have

E|y(i+1)k̄|2 ≤Me−γk̄τE|xik̄|2 ≤ 1
4E|xik̄|2. (19)

On the other hand, by (16), we also have x(i+1)k̄ = x((i+
1)k̄;xik̄, rik̄, tik̄). Hence, by Lemma 3.2,

E|x(i+1)k̄ − y(i+1)k̄|2 ≤ K(τ)e(2K1+3K2+K2
3 )k̄τE|xik̄|2.

(20)

But, by (17),

e(2K1+3K2+K2
3 )k̄τ ≤ e(2K1+3K2+K2

3 )(log(4M)/γ+τ)

= e(2K1+3K2+K2
3 )τ (4M)(2K1+3K2+K2

3 )/γ .

Substituting this into (20) and recalling the definition of
K̄(τ) in the statement of Theorem 3.1, we see that

E|x(i+1)k̄ − y(i+1)k̄|2

≤ 1
2K̄(τ)(4M)(2K1+3K2+K2

3 )/γ E|xik̄|2. (21)
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By (19) and (21) we therefore have that

E|x(i+1)k̄|2 ≤
(

1
2 + K̄(τ)(4M)(2K1+3K2+K2

3 )/γ
)
E|xik̄|2.

(22)

Since τ < τ∗ and K̄(τ) is an increasing function of τ , we
see from (12) that

1
2 + K̄(τ)(4M)(2K1+3K2+K2

3 )/γ < 1.

Hence may write

1
2 + K̄(τ)(4M)(2K1+3K2+K2

3 )/γ = e−λk̄τ

for some λ > 0. It then follows from (22) that

E|x(i+1)k̄|2 ≤ E|xik̄|2e−λk̄τ . (23)

This implies immediately that

E|xik̄|2 ≤ E|x0|2e−λik̄τ , ∀i = 0, 1, 2, · · · . (24)

Now, for any t ≥ t0, there is a unique i ≥ 0 such that
t0 + ik̄τ ≤ t < t0 + (i+ 1)k̄τ . By (16), we have

x(t) = x(t;xik̄, rik̄, tik̄).

By the Itô formula and Assumption 2.1, it is easy to
show that

sup
tik̄≤u≤t

E|x(u)|2 ≤ E|xik̄|2

+ (2K1 + 2K2 +K2
3 )E

∫ t

tik̄

[
sup

tik̄≤u≤s
E|x(u)|2

]
ds.

for t ≥ tik̄. The Gronwall inequality yields

E|x(t)|2 ≤ E|xik̄|2e(2K1+2K2+K2
3 )(t−tik̄) ∀t ≥ tik̄. (25)

This, together with (24), implies

E|x(t)|2 ≤ E|xik̄|2e(2K1+2K2+K2
3 )k̄τ

≤ E|x0|2e−λik̄τ+(2K1+2K2+K2
3 )k̄τ

≤ M̄E|x0|2e−λ(t−t0),

where M̄ = eλτ+(2K1+2K2+K2
3 )k̄τ . But this is the re-

quired assertion (14). 2.

4 Design of Discrete-time Feedback Control

The new theory established above enables us to design
the discrete-time feedback control for the stabilization
problem (3) in two steps:

(i) Design the control function u : Rn × S × R+ → Rn

for the auxiliary hybrid SDE (10) to be mean-square
exponentially stable.

(ii) Find the unique root τ∗ > 0 to equation (12) and
make sure τ < τ∗.

Then the discrete-time control u(x(δ(t, t0, τ)), r(t), t)
will stabilize the controlled hybrid SDE in the sense of
the mean-square exponential stability. Step (i) has its
own right of course. In fact, there is an intensive litera-
ture in the study of the stabilization problem (10). For
example, the stabilization by a continuous-time (regu-
lar) feedback control or sliding mode control has been
discussed by several authors [9,15,17,25,26]. We have no
space in this paper to develop in this direction but we
will only make use of the existing results to illustrate
the two steps above. Due to the page limit, we will only
apply the results in [15] to the linear hybrid SDEs for
illustrations but leave the other results and nonlinear
SDEs to the reader.

Suppose that we are given an n-dimensional unstable
linear hybrid SDE

dx(t) = A(r(t))x(t)dt+
m∑
k=1

Bk(r(t))x(t)dwk(t) (26)

on t ≥ t0. Here A, Bk are mappings from S → Rn×n

and we will also write A(i) = Ai and Bk(i) = Bki. What
we are required is to design a feedback control function,
in the form of u(x, i) = F (i)G(i)x, in the drift part so
that the controlled SDE

dx(t) = [A(r(t))x(t) + F (r(t))G(r(t))x(δ(t, t0, τ))]dt

+
m∑
k=1

Bk(r(t))x(t)dwk(t) (27)

will be mean-square exponentially stable, where F and
G are mappings from S to Rn×l and Rl×n, respectively,
and we will also write F (i) = Fi and G(i) = Gi. In prac-
tice, only one of them is given while the other needs to
be designed. They are known as [15]: (i) state feedback:
design F (·) when G(·) is given; (ii) output injection: de-
sign G(·) when F (·) is given. We will only discuss the
case of state feedback. By Theorem 3.1, our first step is
to design F (·) for the following controlled hybrid SDE

dy(t) = [A(r(t)) + F (r(t))G(r(t))]y(t)dt

+
m∑
k=1

Bk(r(t))y(t)dwk(t) (28)

to be mean-square exponentially stable. Assume that
for some number γ > 0, we can find a set of solutions
Qi ∈ Rn×n and Yi ∈ Rn×l (i ∈ S), with Qi = QTi > 0,
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to the following linear matrix inequalities (LMIs)

QiAi + YiGi+ATi Qi +GTi Y
T
i +

m∑
k=1

BTkiQiBki

+
N∑
j=1

γijQj + γQi ≤ 0. (29)

Set Fi = Q−1
i Yi. Then, in the same way as [15, Theo-

rem 3.2] was proved, we can show that the solution of
equation (28) satisfies

E|y(t;x0, r0, t)|2 ≤ME|x0|2e−γ(t−t0), ∀t ≥ t0 (30)

for all t0 ≥ 0, x0 ∈ L2
Ft0

(Rn) and r0 ∈MFt0
(S), where

M =
maxi∈S λmax(Qi)
mini∈S λmin(Qi)

. (31)

That is, Assumption 2.2 is fulfilled. It is obvious that
Assumption 2.1 is also fulfilled with

K1 = max
i∈S
‖Ai‖, K2 = max

i∈S
‖Q−1

i YiGi‖,

K3 = max
i∈S

√∑
m
k=1‖Bki‖2. (32)

By Theorem 3.1, we therefore obtain the following useful
corollary.

Corollary 4.1 Assume that for some number γ > 0,
there is a set of solutions Qi ∈ Rn×n and Yi ∈ Rn×l

(i ∈ S), with Qi = QTi > 0, to the LMIs (29). Let
M,K1,K2,K3 be defined by (31) and (32). Let τ∗ > 0 be
the unique root to equation (12). If we set Fi = Q−1

i Yi
(i ∈ S) and make sure that τ < τ∗, then the controlled
hybrid SDE (27) is mean-square exponentially stable.

Example 4.2 Consider the linear hybrid SDE

dx(t) = A(r(t))x(t)dt+B(r(t))x(t)dw(t) (33)

on t ≥ t0. Here w(t) is a scalar Brownian motion; r(t) is
a Markov chain on the state space S = {1, 2} with the
generator

Γ =

[
−1 1

1 −1

]
;

and the system matrices are

A1 =

[
1 −1

1 −5

]
, A2 =

[
−5 −1

1 1

]
,

B1 =

[
1 1

1 −1

]
, B2 =

[
−1 −1

−1 1

]
.

This hybrid SDE is not mean square exponentially sta-
ble. Let us now design a discrete-time state feedback con-
trol to stabilize the system. Assume that the controlled
hybrid SDE has the form

dx(t) = [A(r(t))x(t) + F (r(t))G(r(t))x(δ(t, t0, τ))]dt
+B(r(t))x(t)dw(t), (34)

where
G1 = (1, 0), G2 = (0, 1).

Applying Corollary 4.1, we can show that if we set

F1 =

[
−10

0

]
, F2 =

[
0

−10

]
,

and make sure that τ < τ∗ = 0.0000308, then the
discrete-time controlled hybrid SDE (34) is mean-square
exponentially stable. The computer simulation (Figure
4.1) supports this result clearly.
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Figure 4.1: Computer simulation of the paths of r(t), x1(t)
and x2(t) for the discrete-time controlled hybrid SDE (34)

with τ = 10−5 using the Euler–Maruyama method with
step size 10−6 and initial values r(0) = 1, x1(0) = −2 and

x2(0) = 1.
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5 Conclusions and Further Comments

In this paper we have shown clearly that unstable hybrid
SDEs can be stabilized by the discrete-time feedback
controls.

We should also point out that to make our theory more
understandable as well as to avoid complicated nota-
tions, we have only considered the controlled hybrid SDE
(3), where the discrete-time control is designed in the
drift part. It is useful and interesting to consider the case
where the discrete-time control is designed in the diffu-
sion part, or different discrete-time controls are designed
in the drift and diffusion parts. However, due to the page
limit here, we will report these results elsewhere.
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