Confocal SERS mapping of glycan expression for the identification of cancerous cells
Craig, Derek and McAughtrie, Sarah and Simpson, Jonathan and McCraw, Corinna and Faulds, Karen and Graham, Duncan (2014) Confocal SERS mapping of glycan expression for the identification of cancerous cells. Analytical Chemistry, 86 (10). pp. 4775-4782. ISSN 0003-2700 (https://doi.org/10.1021/ac4038762)
Full text not available in this repository.Request a copyAbstract
Lectin-functionalized silver nanoparticles have been successfully designed for use as molecular imaging agents to investigate carbohydrate-lectin interactions at the surface of mammalian cells, using surface-enhanced Raman scattering (SERS). Carbohydrate-lectin interactions are key to many cellular processes and are responsible for controlling an array of cellular interactions. In this study, lectin-functionalized silver nanoparticles were used to detect the expression of carbohydrate species at the cellular interface. The carbohydrate-lectin interactions were demonstrated using three different lectin species for three distinct cell types. Due to the known difference between the expressions of glycans in cancerous versus noncancerous cells of the same origin, this approach has been expanded to study both cancerous and noncancerous prostate cells. This has been achieved via confocal SERS mapping of the expression of the key glycan, sialic acid, on the surface of each of these cell types. In achieving such discrimination, a novel method has been created by which glycan expression can be reproducibly monitored. Comparative studies were performed using both fluorescence and SERS. SERS provided an increased discrimination over fluorescence when analyzing cell subsets to discriminate between cancerous and noncancerous cells. The success of this method means that it could be used to complement the current gold standard histopathological techniques.
-
-
Item type: Article ID code: 49068 Dates: DateEvent20 May 2014Published20 April 2014Published Online19 April 2014AcceptedNotes: . Subjects: Science > Chemistry Department: Faculty of Science > Pure and Applied Chemistry
Technology and Innovation Centre > Bionanotechnology
University of Strathclyde > University of StrathclydeDepositing user: Pure Administrator Date deposited: 20 Aug 2014 09:15 Last modified: 25 May 2024 17:34 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/49068