Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Confocal SERS mapping of glycan expression for the identification of cancerous cells

Craig, Derek and McAughtrie, Sarah and Simpson, Jonathan and McCraw, Corinna and Faulds, Karen and Graham, Duncan (2014) Confocal SERS mapping of glycan expression for the identification of cancerous cells. Analytical Chemistry, 86 (10). pp. 4775-4782. ISSN 0003-2700

Full text not available in this repository.Request a copy from the Strathclyde author


Lectin-functionalized silver nanoparticles have been successfully designed for use as molecular imaging agents to investigate carbohydrate-lectin interactions at the surface of mammalian cells, using surface-enhanced Raman scattering (SERS). Carbohydrate-lectin interactions are key to many cellular processes and are responsible for controlling an array of cellular interactions. In this study, lectin-functionalized silver nanoparticles were used to detect the expression of carbohydrate species at the cellular interface. The carbohydrate-lectin interactions were demonstrated using three different lectin species for three distinct cell types. Due to the known difference between the expressions of glycans in cancerous versus noncancerous cells of the same origin, this approach has been expanded to study both cancerous and noncancerous prostate cells. This has been achieved via confocal SERS mapping of the expression of the key glycan, sialic acid, on the surface of each of these cell types. In achieving such discrimination, a novel method has been created by which glycan expression can be reproducibly monitored. Comparative studies were performed using both fluorescence and SERS. SERS provided an increased discrimination over fluorescence when analyzing cell subsets to discriminate between cancerous and noncancerous cells. The success of this method means that it could be used to complement the current gold standard histopathological techniques.