Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Interaction of fluorescent dyes with DNA and spermine using fluorescence spectroscopy

Gracie, K. and Smith, W. E. and Yip, P. and Sutter, J. U. and Birch, D. J S and Graham, D. and Faulds, K. (2014) Interaction of fluorescent dyes with DNA and spermine using fluorescence spectroscopy. Analyst, 139 (15). pp. 3735-3743. ISSN 0003-2654

Full text not available in this repository. Request a copy from the Strathclyde author


Oligonucleotides labelled with fluorescent dyes are widely used as probes for the identification of DNA sequences in detection methods using optical spectroscopies such as fluorescence and surface enhanced Raman scattering (SERS). Spermine is widely used in surface enhanced based assays as a charge reduction and aggregating agent as it interacts strongly with the phosphate backbone and has shown to enhance the signal of a labelled oligonucleotide. The fluorescence intensity of two commonly used labels, FAM and TAMRA, were compared when spermine was added under different experimental conditions. There was a marked difference upon conjugating the free dye to an oligonucleotide, when FAM was conjugated to an oligonucleotide there was around a six fold decrease in emission, compared to a six fold increase when TAMRA was conjugated to an oligonucleotide. Dye labelled single and double stranded DNA also behaved differently with double stranded DNA labelled with FAM being a much more efficient emitter in the mid pH range, however TAMRA becomes increasingly less efficient as the pH rises. Upon addition of the base spermine, signal enhancement from the FAM labelled oligonucleotide is observed. Increasing probe concentrations of TAMRA oligonucleotide above 0.5 μM led to signal reduction most likely through quenching, either by an interaction with guanine, or through self-quenching. By using different bases for comparison, spermine and triethylamine (TEA), different affects were observed in the measured fluorescence signals. When TEA was added to FAM, a reduction in the pH dependence of fluorescence was observed, which may be useful for mid pH range assays. With the drive to increase information content and decrease time and complexity of DNA assays it is likely that more assays will be carried out in complex media such as extracted DNA fragments and PCR product. This model study indicates that dye DNA and dye spermine interactions are dye specific and that extreme care with conditions is necessary particularly if it is intended to determine the concentrations of multiple analytes using probes labelled with different dyes. This journal is