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This paper focuses on the exploration of families of planar symmetric periodic orbits 

around minor bodies under the effect of solar radiation pressure. For very small asteroids 

and comets, an extension of the Hill problem with Solar Radiation Pressure (SRP) 

perturbation is a particularly well-suited  dynamical model. The evolution of the a and g 

families of symmetric periodic orbits has been studied in this model when SRP is increased 

from the classical problem with no SRP to levels corresponding to current and future 

planned missions to minor bodies, as well as one extreme case with very large SRP. In 

addition, the feasibility an applicability of these orbits for the case of asteroids was analysed, 

and the effect of SRP in their stability is presented. 

I. Introduction 

HE influence of solar radiation pressure perturbation on spacecraft dynamics is of great importance for asteroid 

exploration missions. In the course of a previous study,
1
 the authors encountered a series of periodic solutions 

propagated with a numerical integrator considering the gravitational attraction of a small asteroid and the Sun, and 

including SRP and eclipses (see Figure 1). These orbits are symmetric with respect to the x-axis in a synodic frame 

co-rotating with the asteroid around the Sun (and thus they have two crossings perpendicular to this axis). They have 

two or more inversions of the orbit direction, that take place when they reach the zero-velocity curves for their 

particular energy level, alternating between prograde and retrograde sections of the orbit from the point of view of 

the body. Of particular interest for operations around asteroids would be orbits with retrograde sections close to the 

asteroid, and prograde ones far from it (e.g. second plot in Figure 1), as retrograde orbits are less affected by the 

highly non-spherical gravity fields of minor bodies. 

The first two classes of orbits were identified as members of the well-known a and g’ families of symmetric 

periodic orbits of the Circular Restricted Three Body Problem (CR3BP), as described by Hénon.
2
 In particular, the 

top branch of Hénon’s g’ family greatly resembles the type of orbits with one loop and two inversions that were 

found in the numerical propagation analysis. The following sections present the evolution of these families when 

solar radiation pressure is introduced and study the applicability of these orbits for minor bodies.  

A. Families of symmetric periodic orbits in the CR3BP 

In his 1969 paper, Hénon explored families of symmetric periodic orbits in the planar case of the CR3BP for a 

very small secondary (limiting case of Hill). Hénon concentrated on simple-periodic cases (orbits with only two 

crossings of the x-axis), although the aforementioned branch of the g’ family has 4 crossings and is thus double-

periodic according to Hénon’s own definition. He systematically mapped the planar problem, and cross-checked the 

validity of previous symmetric periodic solutions reported by Hill himself, Lord Kelvin, Jackson and the outputs of 

the more thorough search by Matukuma;
3-5

 and studied the in-plane stability of these solutions. 

This series of families in the CR3BP have been extensively studied and are still of great interest. Besides the 

references used by Hénon in his classical series of papers, other authors came across orbits of the a, g and g’ family, 

albeit for different mass ratios (no longer Hill problem). Darwin
6
 presented an incomplete map of various classes of 

orbits for a mass ratio of 1/11 (he studies a fictitious Sun-Jupiter case with a much larger mass for Jupiter), which 
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corresponds to a section of the g-g’ family. Broucke
7
 presented the results previously obtained in his thesis for orbit 

families in the Earth-Moon system. Szebehely worked on these same sets of periodic obits.
8
 His book Theory of 

Orbits
9
 is still a classic reference with an extensive study on different families in the CR3BP, mostly for equal 

masses (the so-called Copenhagen problem), but also reviewing and completing Darwin’s and Broucke’s work. 

Hénon had also studied prior to Hill problem planar symmetric families in the Copenhagen problem as the other 

limiting case of the CR3BP.
10

 In fact, the naming convention assigning letters for the orbit families followed by 

Szebehely and Hénon actually spawns from the nomenclature Strömgren introduced for families of solutions for the 

Copenhagen problem decades before.
11

 Family a is also sometimes referred to in literature as planar Lyapunov 

orbits, while certainj sections of family g are also referred to as Distant Prograde Orbits (DPO). 

Hénon continued studying the vertical stability of these families in the equal masses case
12

 and the Hill 

problem.
13

 Michalodimitrakis
14

 later extended the work of Hénon by studying some 3-dimensional families of orbits 

branching off from the vertical critical orbits in the planar case. Perko
15

 established the existence of the families a, c, 

f, g, g’, g”… mapped by Hénon
2
 for the case of small μ>0. He overlaps his families over Henon’s, showing their 

similarity. An additional paper of Hénon,
16

 in which he came back to the same problem after over 30 years, 

expanded his search to double and triple-periodic orbits as well. He follows the stricter definition of N-periodic or 

multiplicity N: orbits with 2N crossings of the x-axis. With this definition the type of trajectories presented in Figure 

1 are simple-periodic, double periodic, 5-periodic, and 8-periodic (2, 4, 10 and 16 crossings of the x-axis 

respectively). A few years later, Hénon
17

 revisited once more the Hill problem to study asymmetric periodic 

solutions.  

Finally, Lara and Russell
18

 performed a comprehensive review of the g family for different mass ratios 

(explaining and comparing among others Darwin’s results for the fictitious Sun-Jupiter case
6
 or Broucke’s for the 

Earth-Moon system
7
), including applications for a Jupiter-Europa orbiter.

19
 Two recently published papers by 

Batkhin,
20, 21

 presented an algorithm with regularized coordinates to systematically obtain all families reported by 

Hénon for Hill problem plus a set of additional families including multiple collisions with the secondary body. On 

private conversation with Patricia Verrier
22

 to discuss the branching and connections between two-dimensional and 

three-dimensional families, she reported that she was studying families of period-doubling bifurcations from halo 

orbits for the Earth-Moon mass ratio (which she names U1 and U2), that resemble planar g’ orbits. She reports a 

connection with the g’ family and has proved the existence of this connection also in the Hill problem. 

 
Figure 1. Families of solutions in a co-rotating synodic frame. 

B. Extending Hill problem with SRP 

Hill’s limiting case of the CR3BP is particularly suited to the study of spacecraft trajectories in the vicinity of 

asteroids, as the mass of the asteroid can be considered negligible with respect to the Sun, leading to very low mass 

ratios. However, SRP plays an important role around these minor bodies. It is arguably the largest perturbing force 

for spacecraft with typical area to mass ratios. Its effect on the well-known symmetric periodic orbit solutions of the 

CR3BP has not been studied in such great detail. 

Approaching the classical photo-gravitational CR3BP,
23, 24

 Papadakis
25

 studied the evolution of planar symmetric 

families in the equal masses case (Copenhagen problem) with two radiating bodies. This approximation has 

interesting applications in the study of accretion disks around binary stars. Markellos et al.
26

 studied the limiting 

case of Hill for different configurations of the radiating bodies, and later analyzed the evolution of families of 

periodic orbits up to high multiplicity (16-periodic) and their stability.
27

 A more comprehensive analysis using 

regularized coordinates covering symmetric periodic orbits up to multiplicity 81 can be found in Ref. 28. These 

studies limit themselves though to low levels of solar radiation pressure, applicable to a star-planet case, but falling 

short for the case of asteroids. 
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II. The photo-gravitational Hill problem 

For the analysis in this paper we part from the classical equations of motion for the CR3BP in the synodic frame 

centred in the barycentre of the system: 

    
 

 
 2

3 3
ˆ ˆ ˆ2 (1 ) 1
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where distances have already been normalized by the radius of the circular orbit of the asteroid d. The subscripts A 

and S represent the asteroid and the Sun respectively, and the Sun or more massive body is assumed on the left 

(contrary to the convention used in Szebehely
9
). The mass ratio  and mean motion  are given by:

 

3
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The lightness number  in Eq. (1) represents the ratio of the solar radiation pressure and the gravitation of the 

Sun, defined as: 

4 S

LQ A

c m


 


              (3)

 

where L is the solar luminosity, Q the solar radiation pressure coefficient, which depends on the material properties, 

c is the speed of light, µS is again the gravitational constant of the Sun, and A/m is the area to mass ratio of the 

spacecraft. The solar radiation pressure force has been modelled with the so-called cannon-ball approach, assuming 

the spacecraft has a constant effective area always perpendicular to the Sun-spacecraft line, with the only component 

of the force in the radial direction. 

Following Hénon,
2
 we normalize the time with the inverse of the mean motion and apply a change of reference 

frame centre, time normalisation, and scaling of distances by 
1/3 : 
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The lightness number is also scaled with
1/3 as the distances: 

1/3

0 /                (5) 

Assuming the mass ratio   small, and keeping only terms 
2/3 or larger, the classical Jacobi constant in the 

rotating frame, given by: 

   2 2 2 2 2 22 1 / 2 /S S A AC x y r r x y z         
     (6)

 

then becomes: 

1/3 2/3 2 2 2 2 2 2 2 2

0 03 2 (3 2 2 ' ' ' )C                       
    (7)

 

As the first part is constant (for a given lightness number and mass ratio), similarly to Hénon we can define a 

new Jacobi constant   given by: 

1/3 2/3 2 2 2 2 2 2 2 2

0 0( 3 2 ) / 3 2 2 ' ' 'C                         
   (8)

 

Finally, the equations of motion in the rotating frame ' ( )F   take the well known form: 
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These are equivalent to the EOM defined in Byram and Scheeres
29

 or Broschart et al.
30

 

A. The a, g and g’ families in the original Hill problem 

The former equations reduce to the set studied by Hénon 
2
 when equating the lightness number to zero. This set 

of equations does not depend then on any additional parameter. The same planar periodic families of orbits 

symmetric with respect to the  -axis were reproduced using Hénon’s reported values as initial guesses.  

We concentrate in this paper on the families in the vicinity of the L2 region. With the introduction of SRP, this 

region is reduced in size and is closer to the secondary, while the L1 point migrates far in the direction of the 

radiating primary and its associated families of orbits are thus of less interest for the observation of an asteroid. Only 

simple-periodic families (and a double-periodic branch) were considered as in the original paper by Hénon. Figure 2 

represents the solution map around L2 in the   space, with 
 
representing the initial position along the  -axis. 

The initial conditions were selected as a perpendicular crossing point of the  -axis with positive ' . The shaded 

patch represents the forbidden region, given by: 
2

03 2 2                   (10) 

It can be observed that family a, or the planar Lyapunov family (Figure 3 top left) originates from L2 (black x 

marker) and terminates asymptotically at 0  . 

Family g (Figure 3 top right) starts off at a negative Jacobi constant as large ribbon-type orbits with crossings 

very close to the secondary body. As the Jacobi constant increases, the ribbon shape disappears and they become 

circular. There is a bifurcation point (black dot marker) from where another planar subfamily originates (labelled 

g’). The branch of the g family to the right of the bifurcation point consists of decreasingly smaller almost circular 

orbits around the secondary. 

Family g’ bifurcates from an almost circular orbit of the g family. The branch to the top of the bifurcation point 

has a collision point (black + marker) with the secondary. To the left of the collision point family g’ is double 

periodic (4 intersections with the x-axis, Figure 3 bottom left) and follows closely the a family in the   space. 

To the right of the collision point (Figure 3 bottom right) and above the bifurcation, family g’ consists for the most 

part of a series of oval-shaped orbits extending towards the right. Below the circular orbit at the bifurcation point the 

oval orbits continue extending towards the left until their shape starts deforming with ribbon-like loops again. There 

is another collision point (not indicated) with the secondary at  =0 and the g’ family continues in the negative
 


 
quadrant after the collision. This part of the family has not been studied in this paper. 

Orbits intersecting the secondary body surface for an average asteroid density of 2.6 g/cm
3
 are plotted with a 

dashed line. It is not surprising that this region is around the collision point. 

 
Figure 2: Solution map of the symmetric periodic families around L2 in the CR3BP 



 

American Institute of Aeronautics and Astronautics. AIAA-2014-4120 
 

 

5 

 

 

 
Figure 3: Families a (top left), g (top right) and g’ (bottom, split in two branches) in the Hill problem with no 

solar radiation pressure 

 

B. Evolution with lightness number 

By means of a continuation method, we increase the value of 0 up to more realistic lightness numbers. For 

currently flying and planned minor body orbiters the lightness number is usually of the order of 20-30.
31

 We also 

consider an extreme case with a 0  value of approximately 684 (corresponding to a small 50 m radius asteroid at 

1 AU, average asteroid density of 2.6 g/cm
3
, 100 kg spacecraft mass and 8 m

2
 effective area). 

Figure 4 shows the evolution of the families with increasing
0 . The L2 point position on the -axis decreases, 

while its Jacobi constant increases with lightness number. The bifurcation point of the g-g’ families disappears 

immediately for small lightness numbers resulting in two unconnected families (in the plane, there could still be 

connections through intermediate three-dimensional families). Arbitrarily, the g family was assumed now to contain 

the branch of the original g family left of the bifurcation point, and the branch of the original g’ family to the bottom 

of the bifurcation point (see Figure 4). The g’ family now contains the top branch of the original g’, which includes 

the collision point and the double-periodic section, and the right branch of the original g family including 

decreasingly smaller orbits around the secondary. 

The new g family reduces its size and the maximum 
 
crossing decreases rapidly. It then disappears for large 

lightness numbers. The right branch of the new g’ family on the other hand quickly tends to skirt the border of the 

forbidden region, tending to linear degenerate orbits along the  -axis. Meanwhile, the collision point that separates 

the simple and double periodic portions of the new g’ family migrates towards the L2 point. 

This behaviour is similar to the one observed in the study of radiating equal masses,
25

 and continues the results 

obtained in Kanavos et al.
27

 for lightness numbers up to 0.33. The following sections show the changes in the shape 

of the orbits with SRP. 



 

American Institute of Aeronautics and Astronautics. AIAA-2014-4120 
 

 

6 

 
Figure 4: Solution map evolution with increasing lightness number 

0  
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1. Family a 

Figure 5 shows the evolution of the a family from bean-shaped to boomerang-like orbits. 

 
Figure 5: Family a evolution with increasing lightness number 

2. Family g-g’ 

Figure 6 plots orbits of the left branch of the g’ family up to the maximum value of  
 
crossing for various 

Jacobi constants. This includes the double periodic branch left of the collision point plus a few oval-shaped simple 

periodic orbits. 

Figure 7 plots orbits of the right branch of the g’ family from the maximum value of  
 
crossing for various 

Jacobi constants. In the case of no SRP (see Figure 3), family g’ continued with oval-shaped orbits oriented towards 

the left until the collision point at  =0. In Figure 7, the branch now includes the former part of the g family which 

consisted of direct orbits around the secondary of reducing size. 

 
Figure 6: Family g’ (left branch) evolution with increasing lightness number 
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Figure 8 plots orbits of the g family from the maximum value of  
 
crossing for various Jacobi constants. 

Family g now transitions from the ribbon-type orbits in the original g family to the left-extending oval-shape orbits 

in the original g’. For a lightness number of 1 the orbits transition between the two ribbon-type orbits without an 

oval-shape phase. 

 

 
Figure 7: Family g’ (right branch) evolution with increasing lightness number 

 

 
Figure 8: Family g evolution with increasing lightness number 

C. Feasibility of the single periodic g’ family solutions 

The right section of the new g’ family appears to always intersect the asteroid surface for high lightness numbers 

(dashed lines in Figure 4 represent intersection with the secondary). To better estimate if there is a size of asteroids 

for which these orbits do not intersect the surface, the radius of the surface has been plotted in the normalised and 

scaled space   and ' . The asteroid radius (assumed a spherical body) in scaled coordinates is fixed for a given 

density, and can be calculated as: 

3
31

4

S
normR

d G






            (11)

 

This allows us to plot with dashed black lines in Figures 5 to 7 three circles representing the asteroid surface for 

densities of 1, 2 and 3 g/cm
3
 respectively, assuming a distance d to the asteroid of 1 AU. These lines indicate that for 

realistic densities the right branch of the g’ family intersects the surface for large 
0 . It is particularly noticeable for 

the bottom right plot of Figure 7. 

In Figure 9 the maximum pericentre height for the right branch of the new g’ family and the 

maximum crossing of the g family have been plotted as a function of the lightness number. Horizontal lines 
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indicate radius of the secondary for different densities ranging from 1 to 7 g/cm
3
, this last density much larger than 

the expected values for minor bodies. The distance between the asteroid and the Sun is assumed again 1 AU. For 

lightness numbers higher than 8 the whole right branch of the g’ family intersects the surface. The lightness number 

for a few representative asteroid missions are also indicated, showing that only for missions to very large asteroids 

such as Eros, where low lightness numbers are realistic, is this right branch feasible. The maximum crossing of the 

g family decreases even more rapidly, falling below the asteroid surface already for values as low as 2. For reatively 

low lightness numbers, family g of “distant” prograde orbits or DPOs can thus no longer be considered distant. 

 

Figure 9: Maximum pericentre height of the simple-periodic g’ branch and maximum  crossing of the g 

family. For large 
0  they fall below the body surface. 

 

III. Stability of a and g’ families of periodic orbits 

Some of the orbit families have been shown to be unfeasible or non-existent for large lightness numbers. On the 

other hand, for the feasible branches and families, the stability of the periodic orbits needs to be taken into 

consideration to have usable and practical orbits for exploration. We concentrate on the family a and g’ as they have 

feasible sections. From the results of Hénon,
2
 in the Hill problem without SRP all a orbits and all g’ double periodic 

are unstable, with two small sections of stable orbits in the simple-periodic branch.  

A. Transition matrix propagation 

In order to calculate the linear stability using Floquet theory, we obtain the state transition matrix  by 

integrating it together with the state vector along the trajectory for one orbital period.
32

 The extended equations of 

motion are given by: 

( )

( )
'

'

F

F

 






 
  

       
 

             (12) 

where   is the scaled state vector, F the dynamics of the system presented in Eq. (9), and the initial conditions for 

the transition matrix integration is the identity matrix. The equations for the propagation of  in the photo-

gravitational Hill problem are then given by: 

   
1 3 1 3

3 5

1 3 1 3

[0] [I]

3 0 0 0 2 0
' [I]

0 0 0 3 2 0 0

0 0 1 0 0 0
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 

 

 

 
 
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        

       (13)
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Once the state transition matrix is integrated over a full revolution, the monodromy matrix is calculated by 

mapping the transition matrix to the selected surface of section. The choice in initial conditions (a perpendicular 

crossing point of the  -axis with positive ' ) implicitly selects 0 
 
as a surface of section. This results in a 

reduced state vector * ( , , ', ')T      in which the
 
and ' coordinates have been eliminated. Following 

Scheeres
32

 terminology, a series of auxiliary matrixes (P0, PH and PS) help map the transition matrix to the 

monodromy matrix. P0 maps 1-to-1 the elements from the full state vector  that are maintained in our reduced 

state vector *  (rows 2 and 5 are thus zero by our choice of surface of section and set of reduced state vector 

elements). 

0

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

P

 
 
 
 

  
 
 
 
 

             (14) 

The following equation for PH is here reproduced to report a typo in Eq. (6.19)  from Ref. 32. It should state 

(more details on the nomenclature can be found in the cited reference): 

0 0
ˆ

IH I n y vP w H H 
            (15)

 

In our particular case, PH is all zeros except for row 5, which contains the first order linear mapping of deviations 

in the reduced state vector to deviations in the eliminated coordinate ' . The relation between deviations in the 

reduced state vector coordinates and deviations on ' , assuming 0d  are given by: 

 2 2 2 3 2

0 0' ' ' (6 2 2 / ) (3 2 / ) 3 1 / '                         
 

2 2 2' ' ' ' ' / 2 '           
          

2 2 3 2 3' ' ' (1 1/ ) (1 1/ ) / 2 '               
        

2 2 2' ' ' ' ' / 2 '           
  

 

 
 

 
(16) 

There are only associated deviations of first order when considering the first coordinate, so only the first element 

of row 5 of matrix PH is non-zero:
 

2

0

0

3 1/
(5,:) 0 0 0

'
HP



  




  
  
 

       (17)

 The matrix P0+PH thus maps then initial deviations in the reduced state vector to initial deviations in the full 

state vector 
0 0 0( ) *HP P     .  

Finally PS maps the final conditions after one period of propagation to the surface of section
0

( )S fP


  

 , 

taking into consideration the time derivatives of each component of the final position vector, and linearly mapping 

the matrix to 0  . 

 6 6 ' 0 1 0 0 0 0 '
f

S xP I
 

 


   
       (18)

 

The monodromy matrix is obtained in the usual way as: 

0 0( )T

M S HP P P P               (19) 

This results for our problem in a sparse 4x4 matrix, where the in-plane and out-of-plane dynamics appear to be 

decoupled. The monodromy matrix obtained can then be split into two 2x2 matrixes and the stability for each type 

of movement studied separately. The simplified condition for linear stability for each of them is then given by 

 ,2 2 2M xTr    (see Ref. 33) 
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B. Stability results and plots  

With this stability criteria, family a remains always unstable, as was the case when solar radiation pressure was 

not introduced.  

Figures 10 and 11 present the stability index (trace of the 2x2 monodromy matrix) for family g’ as a function of 

the   crossing scaled with the   position of point L2. Orbits are stable for stability index between -2 and 2. For the 

left branch of family g’, including the double-periodic section, orbits are mostly in-plane unstable for low lightness 

number, but become stable as the lightness number increases (see Figure 10 left), with the extreme case with large 

lightness numbers tending towards stability index equal to 2. Conversely, when considering out-of plane stability 

(see Figure 10 right), the family displays a somewhat opposite behaviour: the family presents regions of stability for 

low lightness numbers for certain ranges of  -axis crossings. However, it becomes unstable as the lightness number 

increases, and the extreme case tends again to a stability index equal to 2. 

 
Figure 10: Stability of family g’ left branch, in-plane (left) and out-of-plane (right) 

 

On the other hand, the right branch of family g’, which is always simple-periodic, seems stable for most of the 

range when the lightness number is not zero, both in-plane and out-of plane (see Figure 11). However, this family 

consisted of orbits intersecting the surface of the secondary for large lightness numbers, questioning their 

applicability in the real world. Note also that the behaviour of this branch in the case of no SRP is intrinsically 

different for low   crossings, as it includes a different section of the g-g’ family.  

 
Figure 11: Stability of family g’ right branch, in-plane (left) and out-of-plane (right) 
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IV. Further extensions 

The analysis presented uses a simplified dynamics to study a particular set of periodic orbit families in the planar 

Hill problem with solar radiation pressure. Further exploration of periodic families and extended dynamic models 

are possible and desirable when applications for real asteroid missions are considered. 

A. Additional families of periodic orbits 

The analysis in this paper limits itself to the set of simple-periodic or double-periodic families studied by 

Hénon.
2
 In the course of the study, various exotic and complex orbits were found belonging to the higher order 

periodicity families, still in the planar case (see Figure 12 for a sample of the trajectories found, mostly for low 

lightness numbers). Families up to multiplicity 81 were already reported in literature.
28

 The family evolution, 

feasibility and stability analysis could be extended to N-periodic families. Despite the undeniable beauty of the wide 

range of solutions, their prospective usefulness is limited, due to frequent passes close to the asteroid, which could 

compromise the safety of a spacecraft when more perturbations are taken into consideration.  

An additional possible extension is the study of three-dimensional periodic orbit families bifurcating from the planar 

ones or from known three-dimensional families such as halo orbits.  

  
Figure 12: Additional families 3-periodic (1), 4-periodic (2, 3), 5-periodic (4, 5) and even 12-periodic (6) 

B. Higher fidelity models 

Regarding more complex dynamical models, a and g families can be reproduced with a full inertial numerical 

integration including SRP, eclipses, 3
rd

 body perturbations and non-sphericity gravitational perturbations. The 

following equations of motion in an inertial frame incorporate the gravitational potential described as an expansion 

of spherical harmonics, and 3
rd

 body perturbation of the Sun, again modified by a lightness number to represent 

SRP, but without the Hill’s approximation: 

 

     

*

3 3 3

2 0

1

, ,  / (sin ) cos sin

S SC S A NOSPH
A s

S SC S A

N n
nA

NOSPH nm nm nm

n m

r r Ur
r

rr r r

U r R r P C m S m
r


 


    

 

 

 

  
     
  
 

  

   (20) 

Although he full numerical computation of the evolution and stability of symmetric periodic families is outside 

the scope of this paper, the effect of a few of these complications in the model is briefly discussed in this section. 
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1. Effect of eclipses 

Eclipses have been modelled as an intersection of projected circles areas for the asteroid (assumed spherical) and 

the Sun,
1
 which result in a modification in the lightness number value while on umbra or penumbra that depends of 

the intersection area ratio:  

 
*

2
1

SUN

A

R
 



 
  

 
             (21) 

Using Eq. (20) but excluding the gravitational harmonics potential, a and g families were calculated. The 

solution map for the a and g’ double-periodic branch is plotted in Figure 13 for the extreme case of lightness number 

~684. Both families extend beyond the L2 point, and the shape of the orbits dramatically changes for the cases 

spending a considerable time in eclipse (see Figure 14). 

 
Figure 13: Solution map for the numerical propagation in the inertial frame with eclipses 

 

 
Figure 14: Families a and g’ with numerical propagation in the inertial frame with eclipses. Extreme case of 

0 ~684 

2. Non-sphericity perturbation 

Higher order gravitational harmonics up to order 4 have been included in the propagation of orbits of the g’ 

family, assuming a constant density tri-axial ellipsoid with axes 2 2a b c   rotating uniformly about an axis 

corresponding to its maximum moment of inertia. The rotational axis is assumed perpendicular to the orbital plane. 

It is interesting to observe that periodic orbits still exist with a more complex gravity model. However, the lightness 

number, or area to mass ratio required for a set of initial conditions in vertical velocity depends on the attitude of the 

asteroid at the initial time. A variable effective area controller might be required to maintain such an orbit when 

higher order gravitational harmonics are introduced, as was already suggested 
1
. Given the uncertainty in the mass, 

shape and associated gravity field of most asteroids, adjustable area or reflectivity would be a desired feature for 

orbiters that intend to benefit of SRP enabled exotic orbits. Figure 15 left plots the periodic orbit for a particular 

initial attitude of the asteroid and initial conditions, corresponding to 345 m x-coordinate. Figure 15 right shows the 

area required to maintain that particular orbit assuming a 100 kg spacecraft as a function of the initial angle 

0 between the ellipsoid semimajor axis and the x-axis. The variations in area required are small and easily 

achievable by a variable reflectivity device such as the ones demonstrated on the Ikaros solar sail.
34
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Figure 15: Double-periodic g class orbit example around a tri-axial ellipsoid (left), and area required for 

maintaining the periodic orbit as a function of initial ellipsoid orientation (right). Extreme case of 
0 ~684 

C. Elliptical Restricted Three Body Problem 

The analysis can also be extended to dynamical models of intermediate complexity, such as the Elliptical 

Restricted Three Body Problem (ER3BP), to account for a more representative case of an asteroid in an elliptical 

orbit around the Sun. Nonetheless, the characteristic time or period of the considered orbits is much smaller than the 

usual orbit periods of asteroids, so the variation in distance over a full revolution (which changes both the gravity 

attraction of the Sun and the SRP) would have a reduced effect in the shape and structure of these families. The 

existence of the g’ family in the ER3BP has been demonstrated in literature.
35

 There is no reason to doubt that these 

orbits could as well be extended to the case with non-zero lightness number. 

V. Conclusions 

The photogravitational Hill problem is a useful dynamical system to study the motion of spacecraft in the 

vicinity of asteroids. This paper has mapped the evolution of the a and g-g’ families of planar symmetric periodic 

orbits with the introduction of solar radiation pressure from the original Hill problem to an extreme case with very 

high lightness number. The structure of the solution space deviates from the original solution map in the original 

Hill problem, with the g-g’ family breaking apart into two unconnected families, one of which disappears for high 

lightness numbers. 

The in-plane and out-of-plane stability of these sets of orbits has been calculated, and their feasibility in the case 

of a minor body has been analysed. Family a remains unstable as in the traditional Hill problem for all cases, while 

family g-g’ has certain regions of in-plane or out-of-plane stability. However, the most stable branch of this family 

becomes unfeasible for realistic asteroid densities and the high lightness numbers expected around small asteroids. 
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