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Trapping and instability of directional gravity waves in localized water currents
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The influence of localized water currents on the nonlinear dynamics and stability of large amplitude, statistically
distributed gravity waves is investigated theoretically and numerically by means of an evolution equation for
a Wigner function governing the spectrum of waves. It is shown that water waves propagating in the opposite
direction of a localized current channel can be trapped in the channel, which can lead to the amplification of
the wave intensity. Under certain conditions the wave intensity can be further localized due to a self-focusing
(Benjamin-Feir) instability. The localized amplification of the wave intensity may increase the probability of
extreme events in the form of freak waves, which have been observed in connection with ocean currents.
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I. INTRODUCTION

Water currents are often associated with the occurrence of
rogue waves on the ocean. For example, several observations
of rogue waves have been made off the coasts of South
Africa, Japan, and other places associated with strong water
currents [1]. Localized water currents also naturally occur at
the mouths of big rivers flowing into the oceans or lakes.
Field observations of the trapping of water waves in opposing
currents have been made in the Gulf stream [2]. Water waves
encountering a counterpropagating current will slow down
and their wave energy pile up, enhancing their amplitudes
and increasing the statistical risk of extreme events. Opposing
currents can lead to the steepening and breaking of waves
[3], as well as to instabilities and localization of waves [4].
Variable currents can also focus waves into caustic regions
[5,6] and capture waves into localized, opposing currents
[7–10], where large amplitude waves are produced. There is
sometimes a distinction made between extreme waves meaning
large in absolute terms, and freak waves meaning unusual
waves [5,9]. Naturally occurring waves on the ocean contain
a mixture of different frequencies and propagation directions.
Statistical descriptions of water waves have been derived in
the past using dimensional arguments and by parametrization
of experimental data [11,12]. The most widely used kinetic
models that govern collective interactions between a spectrum
of water waves are Hasselmann’s [13] and Zakharov’s [14]
models for random waves. Hasselmann’s equation has been
used to model the trapping and intensification of water
waves in currents [2,8,15]. Alber’s model [16,17] uses ideas
from quantum statistics [18] to derive a transport model for
narrow-banded wave trains. Similar approaches of quantum-
like transport equations are used for nonlinear optics [19],
plasmas [20], quantum mechanics [21], etc., and are therefore
of general interest to nonlinear wave systems. A finite width
of the wave spectrum tends to decrease the instability due to
phase mixing of the waves, an effect analogous to Landau
damping of waves in plasmas [16]. The purpose of this paper
is to develop an evolution equation for the Wigner function
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governing the spectrum of water waves. The model includes
the effect of a localized current, in addition to the effects
of wave dispersion and nonlinearity, for a distribution of
water waves. Using realistic parameters from observations of
ocean waves and laboratory experiments, the effects of water
currents with different velocities on the wave spectrum are
studied numerically.

II. MATHEMATICAL FORMULATION

As a starting point, we consider a quasimonochromatic
water wave propagating in the x direction with the carrier wave
number k0 and frequency ω0 = √

gk0, where g ≈ 9.81 m/s2

is the gravitational constant (and k0 > 0). To model waves
with wave vectors and frequencies not too far from the
carrier wave, taking into account first-order dispersive and
nonlinear effects, as well as the influence of a background
water flow, we assume that the surface elevation is given by
η(x,y,t) = (1/2)A(x,y,t) exp(−iω0t + ik0x)+complex con-
jugate, where A is the complex-valued, slowly varying
envelope of the wave. To take into account the effects of a
water current localized in the y direction and flowing in the x

direction (cf. Fig. 1), we use as a starting point the nonlinear
Schrödinger equation

i

(
∂A

∂t
+ v0(y)

∂A

∂x

)
− k0vc(y)A + Dx

∂2A

∂x2

+Dy

∂2A

∂y2
− ξ |A|2A = 0, (1)

where Dx = −ω0/(8k2
0) and Dy = ω0/(4k2

0) are the group
dispersion coefficients, v0(y) = vgr + vc(y) is the sum of the
group velocity vgr = ∂ω/∂k0 = ω0/(2k0) and water current
velocity vc(y), and ξ = ω0k

2
0/2 is the nonlinear coupling

constant. The term v0(y)∂A/∂x takes into account the mod-
ification of the effective group velocity due to the water
current, and the term −k0vc(y)A governs the frequency
Doppler shift due to the current. Higher-order expansions in
terms of nonlinearity and wave dispersion have been used
to derive more general Schrödinger-like models for water
waves including currents [22]. In the formalism of Ref. [22],
the current velocity is of order ε2, while the time and space
derivatives and Ak0 are of order ε, where ε is a nonlinearity
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FIG. 1. (Color online) Localized water current with velocity
vc(y) opposite to the wave direction, leading to the bending of the
wave fronts and an accumulation of water waves in the channel.

parameter. Since the dispersion and nonlinearity coefficients
Dx and −ξ have equal signs, Eq. (1) is modulationally unstable
due to the Benjamin-Feir instability (BFI) for modulation
wave numbers in the forward x direction but is stable in the
perpendicular y direction, since Dy and −ξ have opposite
signs. The idea of trapping of water waves in a localized flow
current [10] can be emphasized by the reduced problem where
A depends only on y and t (but not on x),

i
∂A

∂t
+ Dy

∂2A

∂y2
− V (y)A − ξ |A|2A = 0, (2)

where V (y) = k0vc(y) works as an effective potential. This is
formally equivalent to the one-dimensional Gross-Pitaevskii
equation (e.g., Ref. [23]), used to model Bose-Einstein con-
densates with a repulsive coupling coefficient (since ξ > 0).
Under suitable conditions, where the localized water current
is opposite to the direction of the waves [i.e., when vc(y)
is negative], water waves can be trapped in the potential
well V (y). A linearized version of Eq. (2) leads to a Sturm-
Liouville type boundary-value problem supporting both a
discrete spectrum corresponding to the trapped waves and a
continuous spectrum corresponding to free waves. Hence, in
generic situations, there is a combination of trapped and free
waves [10]. The nonlinearity is defocusing in the y direction
and decreases the share of the trapped component. On the other
hand, the trapping and accumulation of waves can enhance the
growth rate of the BFI in the channel when the x dependence
is taken into account.

Instead of the highly idealized model using monochromatic
water waves, it is interesting to investigate the dynamics of a
spectrum of waves which is more realistic for real gravity
waves. To derive an evolution equation for the wave spectrum,
we define the Wigner function,

f = f (r,v,t) = 1

2(2π )2

∫
A∗(+)A(−)eiλ·[v−v0(y)x̂]d2λ, (3)

where we used the notation A(±) = A(R±,t) and A∗(±) =
A∗(R±,t), with R± = (x±,y±) = (x ± Dxλx,y ± Dyλy). The
velocity variable v = vx x̂ + vy ŷ can be interpreted as the group
velocity with which the energy of each wave is transported, and
λ = λx x̂ + λy ŷ is the Fourier transformed velocity variable,
where x̂ and ŷ are the unit vectors along the x and y directions.
The wave intensity (the variance of the surface elevation) is
defined as I = ∫

f (r,v,t)d2v. If the wave spectrum is entirely
defined by a deterministic wave train A, we have from Eq. (3)
that I = |A|2/2. Following Alber [16], however, we use ideas
from statistical mechanics to describe the dynamics of an
ensemble of waves and to abandon the deterministic view.
The Wigner function (3) is then used to generate an evolution
equation, which contains the velocity v as a variable in addition
to space and time [24]. Taking the time derivative of both sides
of Eq. (3) and eliminating the time derivatives of A and A∗
with the help of Eq. (1), we derive the evolution equation for
the Wigner function

∂f

∂t
+ v · ∇f = 1

(2π )2

∫ {
2iξ [I (+) − I (−)] + i[vc(y+)

− vc(y−)]

[
k0 − (v0(y) − vx)

2Dx

]
− [vc(y+) − 2vc(y) + vc(y−)]

2

∂

∂x

}
eiλ·(v−v′)

× f (r,v′,t)d2v′d2λ − vy

∂vc(y)

∂y

∂f

∂vx

, (4)

where the wave intensity is I = ∫
f (r,v,t)d2v. A detailed

derivation of Eq. (4) is given in the Appendix. For zero current,
vc = 0, Eq. (4) can be shown to be equivalent to Eq. (3.14) of
Ref. [16] in the deep water limit. After integrating Eq. (4) in
velocity space, we find the continuity equation

∂I

∂t
+ ∇ ·

∫
vf (r,v,t)d2v = 0, (5)

which shows that the total wave energy E = ∫
I d2r is

conserved.
A model spectrum in frequency domain, based on the

Pierson-Moskowitz spectrum [11], was parametrized by the
Joint North Sea Wave Project (JONSWAP) [12] as

S(ω) = αP g2

ω5
exp

(
−5

4

ω4
p

ω4

)
γ

exp[− (ω−ωp )2

2σ2ω2
p

]
, (6)

where ωp is the peak frequency, γ is the peak enhancement
parameter, and αP is the Phillips parameter. Since the wave
spectrum is peaked at ω = ωp, we will use ω0 = ωp and k0 =
kp ≡ ω2

p/g in the evaluation of the dispersion coefficients
Dx and Dy . The integral of the spectrum S(ω) in Eq. (6)
over all frequencies yields the wave intensity. To use the
directional JONSWAP spectrum to construct initial conditions
in our simulations, we will use f = f0(v) = F0(v)G(θ ),
where we have introduced polar coordinates vx = v cos(θ )
and vy = v sin(θ ) in velocity space. We obtain F0 from the
frequency spectrum (6) by using the differential variance
dI = S(ω)dω = F0(v)v dv, as

F0(v) = S[ω(v)]
1

v

∣∣∣∣dω

dv

∣∣∣∣ = S[ω(v)]
g

2v3
, (7)
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where we used that the group speed v of the wave packets is
related to the wave frequency ω = √

gk via v = dω/dk =
ω/2k = g/2ω, or ω(v) = g/2v. The directional spread-
ing function is chosen [25,26] as G(θ ) = G0 cos2s(θ/2) =
G0[1 + cos(θ )]s/2s , where cos(θ ) = vx/v, v = (v2

x + v2
y)1/2,

and G0 = 22s−1
2(s + 1)/[π
(2s + 1)] is a normalization
constant [26] such that

∫ π

−π
G(θ )dθ = 1, where 
 is the

Gamma function and s is a directional spread parameter. We
note that G has a maximum at θ = 0 and tends to a narrower
distribution with an increase of s. For ocean waves [12], the
parameter γ is in the range 1–6 and αP in the range 0.01–0.05;
the values γ = 1 and αP = 0.0081 give Pierson-Moskowitz
spectrum [11] of fully developed wind seas. Typical values
on the directional spread parameter s is of the order 5–20 for
typical ocean waves [26,27], but larger values (corresponding
to more unidirectional waves) can be obtained in controlled
experiments [28].

For numerical convenience and for comparison with Alber’s
model [16], we Fourier transform Eq. (4) in velocity space.
Using the Fourier transform pair

f̂ (r,λ,t) = 2
∫

f (r,v,t)eiλ·vd2v, (8a)

f (r,v,t) = 1

2(2π )2

∫
f̂ (r,λ,t)e−iλ·vd2λ (8b)

in Eq. (4) leads to

∂f̂

∂t
− i∇λ · ∇f̂ = −

{
2iξ [I (+) − I (−)] + i[vc(y+)

− vc(y−)]

[
k0 − 1

2Dx

(
v0(y) + i

∂

∂λx

)]
+ [vc(y+) − 2vc(y) + vc(y−)]

2

∂

∂x

}
f̂

+ λx

∂vc(y)

∂y

∂f̂

∂λy

, (9)

where I = f̂ (r,0,t)/2. Compared to Eq. (3.7) of Ref. [16],
Eq. (9) also includes the effects of the water current vc.

III. NUMERICAL RESULTS AND DISCUSSION

To solve Eq. (9) numerically, we employ the methods in
Ref. [29], originally developed to solve the Vlasov equation for
plasmas. Using a pseudospectral method in space, the spatial
shifts are transformed to multiplications in wave-number
space, which are readily evaluated numerically (cf. Ref. [24]).
As initial conditions we use the JONSWAP spectrum with
homogeneously distributed water waves. Equation (8a) is
evaluated numerically to obtain the initial distribution function
in the Fourier transformed velocity space. The used parameters
γ = 6, σ = 0.08, and s = 20 are consistent with JONSWAP
measurements [12] and recent water basin experiments [28].
For αP = 0.05, the initial wave intensity is I ≈ 0.01k−2

0 [cf.
Fig. 2(a)]. Small random fluctuations of the order 2 × 10−5k−2

0
are added to the initial intensity to give a seed to the BFI.
The velocity profile of the water current, flowing in the x

direction, is given by vc(y) = vc0 exp(−y2/L2), where L is
the width of the current channel. For numerical convenience,

FIG. 2. (Color online) Wave intensity for different amplitudes
and signs of the water current flowing in the x direction, given
by vc(y) = vc0 exp(−y2/L2). (a) The initial (t = 0) intensity I ≈
0.01k−2

0 for αP = 0.05, with small (of the order 2 × 10−5k−2
0 )

random fluctuations added to seed the BFI. (b)–(f) The intensi-
ties at t = 3800T0 for (b) vc0 = −0.08vph, αP = 0.05, L = 20k−1

0 ,
(c) vc0 = −0.04vph, αP = 0.05, L = 20k−1

0 , (d) vc0 = +0.08vph,
αP = 0.05, L = 20k−1

0 , (e) vc0 = −0.08vph, αP = 0.05, L = 10k−1
0 ,

and (f) vc0 = −0.08vph, αP = 0.025, L = 20k−1
0 , where vph = ω0/k0

is the phase velocity of the leading wave. The wave energy is localized
by opposing currents (negative vc0) and dispersed by following
currents (positive vc0). Wave localizations due to the BFI are seen
for the opposing currents in panels (b), (c), and (e).

the simulations are carried out in a window centered around the
spectral peak of initial distribution f0(v), by transforming to
a frame moving in the x direction with the group velocity
vgr = vph/2, where vph = ω0/k0 is the phase speed of the
leading wave, i.e., vx → vx + vgr in the initial condition and
in Eq. (4), ∂/∂t → ∂/∂t − vgr∂/∂x in Eq. (4), and ∂/∂λx →
∂/∂λx + ivgr and ∂/∂t → ∂/∂t − vgr∂/∂x in Eq. (9). The
spatial domain of size Lx × Ly = 100 × 200k−1

0 is resolved
by 64 × 64 grid points, with periodic boundary conditions. The
velocity space of size 1.0 × 1.0vph is resolved using 80 × 80
intervals. (The corresponding domain in Fourier transformed
velocity space is 80π × 80πv−1

ph [29].)
Figures 2(b)–2(f) show the intensity distributions at the end

of the simulations at t = 3800T0 for different values of vc0, αP ,
and L, where T0 = 2π/ω0 is the wave period of the leading
wave. It is seen in Fig. 2 that opposing currents (vc0 < 0)
attract surrounding waves and the intensity is increased at the
center of the channel. Since the total wave energy is conserved
[cf. Eq. (5)], an increase of the intensity in the channel leads
to a slight decrease of the intensity at the transverse periphery,
and vice versa. For the opposing current vc0 = −0.08vph in
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a channel of width L = 20k−1
0 [Fig. 2(b)], the wave energy

is further amplified due to the BFI. The instability saturates
nonlinearly by the formation of long-lived, localized wave
packets in the center of the channel. For smaller values of the
opposing current [Fig. 2(c)] the intensity (and the resulting
instability) in the channel is decreased, and for a following
current [vc0 > 0 in Fig. 2(d)] the waves are instead repelled,
resulting in a minimum of the intensity at the center of the
channel. A decrease of the width of the channel [Fig. 2(e)]
only slightly decreases the intensity in the channel. Finally,
decreasing the initial intensity by half using αP = 0.025 [cf.
Fig. 2(f)] leads to a stabilization of the system. The overall
maximum of the intensity as a function of time is shown in
Fig. 3. The intensity has some initial transient oscillations
when the waves are redistributed from the homogeneous initial
condition to be either trapped in or repelled by the channel.
Due to the trapping of waves, the intensity is higher for higher
opposing currents, and a further increase of the maximum
intensity occurs due to the BFI for cases (b), (c), and (e)
with opposing currents. We emphasize that the numerical
results here apply to both ocean waves and experiment using
water tanks or basins. For example, for ocean waves having
the frequency 0.1 Hz and corresponding angular frequency
ω = 0.628 s−1, wave number k0 = 0.040 m−1, and phase
speed vph = 16 m/s, the flow speed used in Fig. 2(b) is vc0 =
−0.08vph ≈ −1.28 m/s at the center of the channel. A width of
the current channel of L = 20k−1

0 corresponds to 500 m for this
case, to be compared with the wavelength 2π/k0 ≈ 160 m for
the leading wave. On the other hand, for experiments [28] using
waves with a frequency 1 Hz, corresponding to ω = 6.28 s−1,
k0 = 4.0 m−1, and vph = 1.6 m/s, we instead have a flow
speed of vc0 = −0.08vph ≈ −12.8 cm/s at the center of the
channel with a width of L = 20k−1

0 = 5 m.

0 500 1000 1500 2000 2500 3000 3500 4000
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FIG. 3. (Color online) Maximum wave intensity as a function of
time. The labels (b)–(f) refer to the different cases in Fig. 2).

In summary, localized opposing water currents trap water
waves which via the BFI can lead to the formation of
long-lived, large amplitude wave packets propagating along
the channel. This may enhance the statistical probability of
extreme events in the form of giant waves.
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APPENDIX: DERIVATION OF THE EVOLUTION EQUATION FOR THE WIGNER FUNCTION

As a starting point to derive Eq. (4), we consider the nonlinear Schrödinger equation

i

(
∂A

∂t
+ v0(y)

∂A

∂x

)
− k0vc(y)A + Dx

∂2A

∂x2
+ Dy

∂2A

∂y2
− ξ |A|2A = 0, (A1)

where

Dx = − ω0

8k2
0

, Dy = ω0

4k2
0

(A2)

are the group dispersion coefficients, v0(y) = vgr + vc(y) is the sum of the group velocity vgr = ∂ω/∂k0 = ω0/(2k0) and the water
current velocity vc(y), which introduces a y-dependent Doppler shift in the nonlinear Schrödinger equation, and ξ = ω0k

2
0/2 is

the nonlinear coupling constant. We define the Wigner function

f = f (r,v,t) = 1

2(2π )2

∫
d2λ eiλ·[v−v0(y)x̂]A∗(R+,t)A(R−,t), (A3)

where R+ = (x+,y+) = (x + Dxλx,y + Dyλy), R− = (x−,y−) = (x − Dxλx,y − Dyλy), and the asterisk denotes complex
conjugation. Taking the time derivative of both sides of Eq. (A3) and replacing time derivatives of A and A∗ on the right-hand
side with the help of Eq. (A1) gives

∂f

∂t
= I1 + I2 + I3 + I4, (A4)

where

I1 = 1

2(2π )2

∫
d2λ eiλ·[v−v0(y)x̂]

(
v0(y+)

∂A∗(+)

∂x
A(−) + v0(y−)A∗(+)

∂A(−)

∂x

)
, (A5)
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I2 = ik0

2(2π )2

∫
d2λ eiλ·[v−v0(y)x̂] [vc(y+) − vc(y−)] A∗(+)A(−)

= ik0

(2π )2

∫
d2λ d2v′eiλ·(v−v′) [vc(y+) − vc(y−)] f (r,v′,t), (A6)

I3 = i

2(2π )2

∫
d2λ eiλ·[v−v0(y)x̂]

[
Dx

(
A∗(+)

∂2A(−)

∂x2
− ∂2A∗(+)

∂x2
A(−)

)
+ Dy

(
A∗(+)

∂2A(−)

∂y2
− ∂2A∗(+)

∂y2
A(−)

)]
= −[vx − v0(y)]

∂f

∂x
− vy

∂f

∂y
− vy

∂v0(y)

∂y

∂f

∂vx

, (A7)

I4 = iξ

2(2π )2

∫
d2λ eiλ·[v−v0(y)x̂][|A(+)|2 − |A(−)|2]A∗(+)A(−) = 2iξ

(2π )2

∫
d2λ d2v′eiλ·(v−v′) [I (+) − I (−)] f (r,v′,t), (A8)

where the notation A(R±,t) = A(±) and A∗(R±,t) = A∗(±) is used.
In the derivation of Eq. (A6), the identity∫

d2v e−iλ·[v−v0(y)x̂]f (r,v,t) = 1

2
A∗(+)A(−) (A9)

was used.
In the derivation of Eq. (A7), the identities

∂2

∂x∂λx

[A∗(+)A(−)] = Dx

(
∂2A∗(+)

∂x2
A(−) − A∗(+)

∂2A(−)

∂x2

)
, (A10)

∂2

∂y∂λy

[A∗(+)A(−)] = Dy

(
∂2A∗(+)

∂y2
A(−) − A∗(+)

∂2A(−)

∂y2

)
(A11)

were used, as well as integration by parts assuming decaying or periodic boundary conditions.
In the derivation of Eq. (A8), the quantity

I (r,t) =
∫

d2v f (r,v,t) = 1

2
|A(r,t)|2 (A12)

was introduced, and the identity (A9) was again used.
Hence the main difficulty in evaluating the time-evolution equation for the Wigner distribution is in the integral I1 in Eq. (A5).

We will use the formal expression

v0(y±) = v0(y ± Dyλy) = v0(y) exp

(
±Dyλy

←
∂

∂y

)
, (A13)

which can be justified by Taylor expansions of v0 and the exponential. The left arrow ← indicates that ∂/∂y acts to the left. We
have

I1 = − v0(y)

2(2π )2

∫ [
exp

(
Dyλy

←
∂

∂y

)
∂A∗

∂x
(+)A(−) + exp

(
−Dyλy

←
∂

∂y

)
A∗(+)

∂A

∂x
(−)

]
eiλ·[v−v0(y)x̂]d2λ. (A14)

We now use a formal property of the Fourier transform λy → −i∂/∂vy to write

∫
exp

(
Dyλy

←
∂

∂y

)
∂A∗

∂x
(+)A(−)eiλ·[v−v0(y)x̂]d2λ = exp

(
−iDy

←
∂

∂y

→
∂

∂vy

) ∫
∂A∗

∂x
(+)A(−)eiλ·[v−v0(y)x̂]d2λ (A15)

and

∫
exp

(
−Dyλy

←
∂

∂y

)
A∗(+)

∂A

∂x
(−)eiλ·[v−v0(y)x̂]d2λ = exp

(
iDy

←
∂

∂y

→
∂

∂vy

) ∫
A∗(+)

∂A

∂x
(−)eiλ·[v−v0(y)x̂]d2λ. (A16)
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Inserting Eqs. (A15) and (A16) into Eq. (A14), and writing the exponentials in front of the integral signs in terms of trigonometric

functions as exp(±iα) = cos(α) ± i sin(α), where α = Dy(
←
∂ /∂y)(

→
∂ /∂vy), we obtain

I1 = − v0(y)

2(2π )2

{
cos

(
Dy

←
∂

∂y

→
∂

∂vy

) ∫ [
∂A∗

∂x
(+)A(−) + A∗(+)

∂A

∂x
(−)

]
eiλ·[v−v0(y)x̂]d2λ

− i sin

(
Dy

←
∂

∂y

→
∂

∂vy

) ∫ [
∂A∗

∂x
(+)A(−) − A∗(+)

∂A

∂x
(−)

]
eiλ·[v−v0(y)x̂]d2λ

}
. (A17)

Finally, we use that

∂A∗

∂x
(+)A(−) + A∗(+)

∂A

∂x
(−) = ∂

∂x
[A∗(+)A(−)] (A18)

and

∂A∗

∂x
(+)A(−) − A∗(+)

∂A

∂x
(−) = 1

Dx

∂

∂λx

[A∗(+)A(−)] (A19)

and an integration by parts in Eq. (A17) to move the derivative with respect to λx from [A∗(+)A(−)] to eiλ·[v−v0(y)x̂]. The result is

I1 = − v0(y)

2(2π )2

{
cos

(
Dy

←
∂

∂y

→
∂

∂vy

)
∂

∂x

∫
A∗(+)A(−)eiλ·[v−v0(y)x̂]d2λ

− sin

(
Dy

←
∂

∂y

→
∂

∂vy

)
[vx − v0(y)]

Dx

∫
A∗(+)A(−)eiλ·[v−v0(y)x̂]d2λ

}
, (A20)

or, using the definition (A3) of the Wigner function,

I1 = −v0(y) cos

[
Dy

←
∂

∂y

→
∂

∂vy

]
∂f

∂x
+ v0(y) sin

[
Dy

←
∂

∂y

→
∂

∂vy

]
[vx − v0(y)]

Dx

f. (A21)

The expression for I1 can be shown in an integral form using the identities

v0(y) cos

[
Dy

←
∂

∂y

→
∂

∂vy

]
∂f

∂x
= 1

2(2π )2

∂

∂x

∫
d2λ d2v′eiλ·(v−v′) [v0(y+) + v0(y−)] f (r,v′,t) (A22)

and

v0(y) sin

[
Dy

←
∂

∂y

→
∂

∂vy

]
[vx − v0(y)]

Dx

f = i

2(2π )2

[vx − v0(y)]

Dx

∫
d2λ d2v′eiλ·(v−v′) [v0(y+) − v0(y−)] f (r,v′,t), (A23)

which can be proven after Taylor expanding and using the definition of the Wigner function. In this way we arrive at the form

I1 = 1

2(2π )2

∫
d2λ d2v′eiλ·(v−v′)

[
−[v0(y+) + v0(y−)]

∂

∂x
+ i[vx − v0(y)]

Dx

[v0(y+) − v0(y−)]

]
f (r,v′,t). (A24)

To conclude, we use the results (A6), (A7), (A8), and (A24) and the definition of group velocity, vgr = v0(y) − vc(y) = ω0/(2k0),
to eliminate v0(y) in favor of vc(y) where convenient. In this manner, we arrive at Eq. (4).
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