Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Nanosatellite nonlinear attitude control testing on an air bearing system

Li, Junquan and Post, Mark and Kumar, Krishna Dev (2012) Nanosatellite nonlinear attitude control testing on an air bearing system. In: CASI ASTRO 2012, 2012-04-24 - 2012-06-24, Fairmont Château Frontenac Hotel.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

While nonlinear attitude control has been explored widely in theory, nanosatellite air-bearing-based spacecraft simulators have not been used to test nonlinear discrete time control techniques. This paper documents development and testing of a nonlinear attitude controller for a next generation nanosatellite. A novel nonlinear control algorithm will be verified with a spherical air bearing system. The stability conditions for robustness against unmatched uncertainties and disturbances are derived using Lyapunov stability theory to establish the regions of asymptotic stabilization. The proposed control method is tested on a three-axis nanosatellite air-bearing system with reaction wheel actuation, and results are compared to numerical simulations to show that precise attitude pointing and tracking can be achieved by dealing with the issues of system nonlinearities, variations in initial conditions, external disturbances, and control force saturation, concurrently. The results will be compared with a combined feedback and feedforward momentum tracking control law in the reference. The attitude control system results will be invaluable to the development and testing of future nanosatellite payloads.