Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Four new bioactive manzamine-type alkaloids from the Philippine marine sponge Xestospongia ashmorica

Edrada-Ebel, Ruangelie and Proksch, P and Wray, V and Witte, L and Müller, W E and Van Soest, R W (1996) Four new bioactive manzamine-type alkaloids from the Philippine marine sponge Xestospongia ashmorica. Journal of Natural Products, 59 (11). pp. 1056-1060. ISSN 0163-3864

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Analysis of the Philippine marine sponge Xestospongia ashmorica afforded four new manzamine congeners 1-4 and four known compounds 5 and 7-9. Compound 1 is the 6-deoxy derivative of manzamine X, while 2-4 are the N-oxides of manzamine J (5), 3,4-dihydromanzamine A (6), and manzamine A (7), respectively. The structures of the new compounds were unambiguously established on the basis of NMR spectroscopic (1H, 13C, COSY, 1H-detected direct, and long-range 13C-1H correlations) and mass spectrometric (EI, FAB-MS, and electrospray ionization) data. Alkaloid N-oxide structures were confirmed by conversion to the corresponding tertiary bases by reduction with Zn/HCl. This is the first report of the occurrence of bioactive manzamine N-oxides in marine sponges. Compound 7 exhibited insecticidal activity toward neonate larvae of the polyphagous pest insect Spodoptera littoralis (with an ED50 of 35 ppm) when incorporated in artificial diet and offered to larvae in a chronic feeding bioassay. Compound 7 was also active against the Gram-positive bacteria Bacillus subtilis and Staphylococcus aureus. Cytotoxicity was studied in vitro using L1578y mouse lymphoma cells. From the alkaloids studied, the N-oxides 3 and 4 were the most active (ED50 = 1.6 micrograms/mL) followed by compound 7 (ED50 = 1.8 micrograms/mL).