Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Enumerating (2+2)-free posets by indistinguishable elements

Dukes, Mark and Kitaev, Sergey and Remmel, Jeffrey and Steingrimsson, Einar (2011) Enumerating (2+2)-free posets by indistinguishable elements. Journal of Combinatorics, 2 (1). pp. 139-163.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A poset is said to be (2+2)-free if it does not contain an induced subposet that is isomorphic to 2+2, the union of two disjoint 2-element chains. Two elements in a poset are indistinguishable if they have the same strict up-set and the same strict down-set. Being indistinguishable defines an equivalence relation on the elements of the poset. We introduce the statistic maxindist, the maximum size of a set of indistinguishable elements. We show that, under a bijection of Bousquet-Melou et al., indistinguishable elements correspond to letters that belong to the same run in the so-called ascent sequence corresponding to the poset. We derive the generating function for the number of (2+2)-free posets with respect to both maxindist and the number of different strict down-sets of elements in the poset. Moreover, we show that (2+2)-free posets P with maxindist(P) at most k are in bijection with upper triangular matrices of nonnegative integers not exceeding k, where each row and each column contains a nonzero entry. (Here we consider isomorphic posets to be equal.) In particular, (2+2)-free posets P on n elements with maxindist(P)=1 correspond to upper triangular binary matrices where each row and column contains a nonzero entry, and whose entries sum to n. We derive a generating function counting such matrices, which confirms a conjecture of Jovovic, and we refine the generating function to count upper triangular matrices consisting of nonnegative integers not exceeding k and having a nonzero entry in each row and column. That refined generating function also enumerates (2+2)-free posets according to maxindist. Finally, we link our enumerative results to certain restricted permutations and matrices.