Picture of blood cells

Open Access research which pushes advances in bionanotechnology

Strathprints makes available scholarly Open Access content by researchers in the Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) , based within the Faculty of Science.

SIPBS is a major research centre in Scotland focusing on 'new medicines', 'better medicines' and 'better use of medicines'. This includes the exploration of nanoparticles and nanomedicines within the wider research agenda of bionanotechnology, in which the tools of nanotechnology are applied to solve biological problems. At SIPBS multidisciplinary approaches are also pursued to improve bioscience understanding of novel therapeutic targets with the aim of developing therapeutic interventions and the investigation, development and manufacture of drug substances and products.

Explore the Open Access research of SIPBS. Or explore all of Strathclyde's Open Access research...

A solid-state NMR study of the immobilization of alpha-chymotrypsin on mesoporous silica

Faure, N. E. and Halling, P. J. and Wimperis, S. (2014) A solid-state NMR study of the immobilization of alpha-chymotrypsin on mesoporous silica. Journal of Physical Chemistry C, 118 (2). pp. 1042-1048.

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Solid-state NMR spectroscopy was used to characterize a model biocatalyst system consisting of the enzyme α-chymotrypsin covalently immobilized on epoxide-silica ((glycidoxypropyl)trimethoxysilane, GOPS, grafted onto the surface of a silica gel). One- and two-dimensional 1H, 13C, and 29Si magic angle spinning (MAS) NMR techniques were employed. The support system (epoxide-silica) was characterized first and it was possible to assign silicon and carbon species in both the silica and the GOPS linker. After attachment of the protein, carbonyl carbons (175 ppm) in the immobilized enzyme were visible in 13C MAS NMR spectra recorded at B0 = 20 T. A number of further changes were observed in the 13C and 29Si MAS NMR spectra during the immobilization process, arising from a cross-linking of the surface silica species and an opening of the epoxide functional group by nucleophilic attack. This study shows the potential of multinuclear solid-state NMR for obtaining a better understanding of solid biocatalyst systems at the molecular level.