Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Effective venue image retrieval using robust feature extraction and model constrained matching for mobile robot localization

Feng, Yue and Ren, Jinchang and Jiang, Jianmin and Halvey, Martin and Jose, Joemon M. (2012) Effective venue image retrieval using robust feature extraction and model constrained matching for mobile robot localization. Machine Vision and Applications, 23 (5). pp. 1011-1027. ISSN 0932-8092

[img]
Preview
PDF (rv-yue-V9)
rv_yue_V9.pdf - Preprint

Download (776kB) | Preview

Abstract

This paper describes a novel system for mobile robot localization in an indoor environment, using concepts like homography and matching borrowed from the context of stereo and content-based image retrieval techniques (CBIR). To deal with variations with respect to viewpoint and camera positions, a group of points of interest (POI) is extracted to represent the image for robust matching. To cope with illumination changes, we propose to produce a contrast image for each video frame by using the root mean square strategy, thus all the POIs are extracted from the corresponding contrast images to provide perceptually consistent measurement of image content. To achieve effective image matching, modeling of robot behavior for model constrained matching is proposed, where normalized cross correlation is employed for local matching to determine corresponding POI pairs followed by homography based global optimization using RANSAC. Meanwhile, application of specific constraints also helps to exclude irrelevant frames in the training set to further improve the efficiency and robustness. The proposed approach has been successfully applied to the Robot Vision task for the ImageCLEF workshop, and the experimental results have fully demonstrated the high-quality performance of our approaches in terms of both precision and robustness. The system and approach outlined in this paper was ranked the second best in the optional task group in ImageCLEF 2009. In addition to demonstrating the merits of our approach in isolation, we also illustrate the benefits of our proposed approach in comparison with other submissions.