
This version is available at https://strathprints.strath.ac.uk/48378/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output.
Supplementary Information

Investigation of factors affecting isolation of needle-shaped particles in a vacuum agitated filter drier through non-invasive measurements by Raman spectrometry

Peter Hamilton, David Littlejohn, Alison Nordon, Jan Sefcik, Paul Slavin, John Andrews and Paul Dallin

a WestCHEM, Department of Pure and Applied Chemistry and CPACT, University of Strathclyde, Glasgow, G1 1XL, UK
b Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, UK
c GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
d Clairet Scientific, 17/18 Scirocco Close, Moulton Park Industrial Estate, Northampton, NN3 6AP, UK

* denotes authors to whom correspondence should be sent

David Littlejohn
Email: d.littlejohn@strath.ac.uk; tel: +44(0)141 548 2067; fax: +44(0)141 548 4212

Alison Nordon
Email: alison.nordon@strath.ac.uk; tel: +44(0)141 548 3044; fax: +44(0)141 548 4212
Assignment of Raman spectra of cellobiose octaacetate (COA) and methanol

Underivatised and 1st derivative Raman spectra of COA and methanol are shown in Fig. S1a and Fig. S1b, respectively.

![Fig. S1. a) Underivatised and b) 1st derivative Raman spectra of COA (red) and methanol (blue).](image)

The methanol peaks at 1036 and 1453 cm-1 in Fig. S1a can be attributed to the C-O stretch and CH\textsubscript{3} bending mode [Mammone et al., 1980]. As the samples were contained within glass
vials and analysed from above, there is a broad peak at approximately 1500 cm$^{-1}$, which arises from the base of the glass vial, evident in the spectrum of methanol. The COA peaks in Fig. S1a can be assigned as follows (VanderHart et al., 1996): i) 900 – 1120 cm$^{-1}$ arise from HCC and HCO bending at C6 and heavy-atom (C-C and C-O) stretching; ii) 1150 – 1330 cm$^{-1}$ arise from heavy-atom (C-C and C-O) stretching and HCC and HCO bending; iii) 1350 – 1410 cm$^{-1}$ arise from HCC, HCO and HOC bending; iv) 1420 – 1490 cm$^{-1}$ arise from HCH and HOC bending; and v) the peak at 1743 cm$^{-1}$ arises from the carbonyls in the acetyl groups.

References
