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Abstract: A computer-based system for modelling and optimizing processes is presented. The Design Structure Matrix (DSM) process
representation was used to model the processes due to its compact, generic and easily quantifiable nature. The system is capable of
calculating a number of process performance metrics that are focussed towards determining the degree of iteration and concurrency within the
process, however, the system is easily extendible to include other process performance measurements. The paper describes the use of a
Genetic Algorithm (GA) to optimise the sequence of activities with the focus of reducing the amount of iteration by reducing the number of
feedback loops and hence reducing the number of initial guesses that are needed in order to undertake highly dependent tasks. Previous
investigations have attempted to define a generic structure for combinatorial optimisation using GAs [Todd, D. (1997). Multiple Criteria Genetic
Algorithms in Engineering Design and Operation, Ph.D. Thesis, Engineering Design Centre, University of Newcastle upon Tyne, UK.], however
this paper demonstrates that the structure of the GA is intrinsically tied to the domain. The focus of this paper was an investigation to determine
the most efficient and timely structure for the GA with respect to process optimisation. Additional criteria are included within the system and it is
has been demonstrated that the structure is applicable for these criteria. It is therefore assumed that if the criteria are dependent upon the
matrix representation, in particular, the sequence of the activities and dependencies, then the GA structure will remain applicable. This
assumption was demonstrated to be correct when the DSM and GA were used with the same GA structure to optimise component modularity
using different optimisation criteria [Whitfield R.l., Smith J.S. and Duffy A.H.B. (2002). Identifying Component Modules, Seventh International
Conference on Artificial Intelligence in Design AID’02, Cambridge, UK, 15-17 July 2002.]. The results indicated that the independent position
based crossover and shift mutation operators with 60 and 20% probabilities respectively was the most successful structure for the GA.
A relationship between the number of activities and the number of evaluations was determined and may be used to eliminate unnecessary

computation in future investigations.
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1. Introduction

Design of made-to-order products invariably involves
alarge number of resources performing a large number of
activities in order to achieve a particular goal in a timely
and appropriate manner with the overall objective of
being faster and better than competitors. The associated
processes throughout each of the product life-phases are
often well established, since the product is frequently a
variant of a previous design, and have evolved as the
business has developed and adapted to address new
technologies. In some instances the processes may be
documented where they are considered to be important,
in others they may be ad hoc, in both cases however, they
are rarely optimized or streamlined in any formal way.
Indeed Prasad [23] suggests that: ““process improvement
is often perceived as an after-thought — a functional
service to be called upon periodically for productivity
improvement”. In addition, “Process restructuring is
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often targeted toward piece-wise or one-at-a-time
improvements due to incremental or add-on approach
of continuous improvement in manufacturing process,
product quality, etc.” Optimisation on the basis of time
alone may realize significant improvements with respect
to the original process [3], however, consideration of the
process as a multi-dimensional space using as diverse a
range of criteria as possible, increases the usefulness of
process-modelling techniques beyond that of operational
management allowing all levels of industrial activity to be
optimized.

Various different process-modelling techniques are
available such as: the Structured Analysis and Design
Technique (SADT) [24], Programme Evaluation and
Review Technique/Critical Path Method (PERT/CPM)
for determining critical paths [34], and, the Design
Structure Matrix (DSM) [27]. However, in each case,
the structure of the process is represented as a series of
activities and dependencies. Each modelling technique
has certain applicability and benefits and restrictions for
use [17,21] that need to be addressed when deciding upon
the objectives of the investigation. The methods are
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generic in nature and allow investigation at multiple
levels of abstraction and are equally applicable within the
design, production, maintenance and other life-phases.
A number of algorithms exist which may be applied to
process optimisation including simulated annealing [14],
genetic algorithms (GA) [13] and Tabu search [6]. The
optimisation problem is extremely difficult however
since the objective is to achieve the optimum sequence of
a number of activities, often on the basis of conflicting
criteria, whilst being constrained by the resource
allocation. The optimisation algorithms tend to have a
“structure”’, for example, the annealing schedule for
simulated annealing, which governs the effectiveness of
the algorithm at solving a particular type of problem.
This paper demonstrates the application of a GA to
process optimisation where the objective was to
determine the optimum sequence of activities within a
number of different process models. The Design
Structure Matrix (DSM) was used as the process
modelling technique due to its generic applicability,
ease of representation within a computer-based system,
and its quantifiable nature. The DSM modelling
technique and system are described within Section 2.
A multi-criteria genetic algorithm was developed and
adapted for application to this particular type of
problem and is described within Section 3. A number
of different process models were used to test the
performance of both the process modelling representa-
tion and of the optimisation algorithms. These
models, and the results of the optimisation for a single
criterion solution are described within Section 4. Having
identified the most efficient structure for the GA, a
multi-criteria optimisation problem is undertaken to
demonstrate the trade-off between criteria in Section 5.
Finally, conclusions are made within Section 6.

2. Design Structure Matrix

The Design Structure Matrix (DSM), also known as
the Dependency Structure Matrix, has been extensively
used to represent activities and their dependencies. The
DSM like most other process modelling techniques, is
generic in nature, but due to its compactness, easily
quantifiable nature, and ability to represent most design
activity relationships, has seen considerable use in the
analysis and management of the product development
process [3,5,15,27].

The DSM consists of a sequence of activities that are
represented in the same order in both the row and
column of the matrix. The central part of the matrix
represents the dependencies between the activities.
Steward [27] originally represented the dependencies in
a binary form: 0 to indicate no dependency, and, 1 to
indicate a dependency, however, the modelling techni-
que has evolved to consider the weight of the

dependencies, as well as consideration of the dependen-
cies as representing concepts other than the flow of
information [5].

A DSM modelling and analysis system was con-
structed with the focus of providing mechanisms
to enable the optimisation of processes with respect to
any number of pre-determined performance metrics —
Figure 1.

The system allows the creation of processes contain-
ing any number of activities with the matrix changing
size automatically as activities are added or removed.
The dependencies between activities may be defined for
any number of single perspectives (mechanical, electrical
etc.) as well as for combinations of perspectives to view
the trade-offs between the perspectives. Clicking a
dependency within the matrix will change the state of
the dependency from either dependent or independent.
The user may also change the weight (or importance) of
the dependency to represent activities that may in some
situations be started prior to the preceding activities to
facilitate concurrency. The weight of the dependency is
represented by its colour.

The system is intended to be an aid to the designer or
manager to improve their understanding of the relation-
ships within the process and enable “what-if”’ scenarios
to be investigated with respect to reordering the activities
both manually and automatically using optimisation.
The system provides a representation of a process that
requires knowledge and experience of that representation
to interpret the results. For example, the extent of the
amount of feedback iteration is quite apparent, however
it is difficult, without experience, to determine the
activities that may be undertaken concurrently. Work is
currently underway to extend the system to provide
the user with feedback that is more directly related to
process characteristics rather than matrix characteristics
such as the determination of design-cycles and design
concurrency. The system provides the fundamental
mechanism in order to include process knowledge-
based techniques in order to further aid the designer
in the identification of improved processes.

The sequence of activities may be managed manually
by dragging ecither of the rows or columns into a new
position whilst simultaneously re-calculating the process
performance metrics, assisting the user in the determina-
tion of an improved sequence. Alternatively, the process
may be optimised using one of the optimisation
algorithms available within the optimisation module.
The system can simultaneously manage the optimisation
of multiple processes although this will obviously take
longer on a computer with a single processor.

3. Efficient Combinatorial Optimisation

It is increasingly apparent from a number of reports
and papers within a variety of different problem



Efficient Process Optimisation 85

F.‘E‘- Dependency Structure Matrix -

Process Optimisation

File Edit Matrix View

B aaaal %66 &

Detaull Fempective

B
penrnee__ BIIEICIERRI S

~Project D
r—r—— | B
S~ Dt Pampeay -1 liefi=]is] [—[j [g@
T NN \ L1
ot | EC=TR
L
(] Blectric Car

f ai |_> kg i

|

® | m

5

e R 5 B
4 Total weight r 1|5 = >
5. Stored battery re.. || frtitioning = 285 =
6. Battery type - ene..| I sation= 4.
7. Battery size and ... | |58 = 158765,00000000007 =
8. Crulsing s o 2 ey
2. 8peed and accel.. [ﬁ[d‘_—l[i | e
10, Accelerationsp..| | | | J| i

5o and acc.. I_II_IJU_'

I

Figure 1. Design Structure Matrix system.

domains that the ‘best’ structure of optimisation
algorithms may be dependent upon the application
[30,32]. The structure for an optimisation algorithm is
defined here as both the types of operators and the
parameter settings used during operation. The differ-
ences observed may be linked to the nature of the
problem, the type of fitness function, of the depth or
breadth of the problem under investigation.

Todd [32] applied a GA to the Travelling Salesman
Problem (TSP) in an attempt to determine an effective
combinatorial structure which was not domain specific,
and which may hence be applied to other similar
problems. The TSP is similar in nature to the DSM
problem where the objective is to determine an opti-
mum sequence in order to either minimize or maximize
some criteria. In the case of the TSP, the objective
is to find the shortest route through a number of
cities, whilst visiting each city only once. The difficulty
in both of these problems lies in the number of
combinations of possible sequences. Within the
DSM problem, for example, a process containing
30 activities has 6.652 x 10°> possible combinations.

An exhaustive search for this type of problem is clearly
inappropriate.

The TSP is perhaps more difficult to solve since the
relative position of each city within the sequence is
critical in determining an optimum sequence, whereas
the difficulty with optimizing the DSM problem appears
to be focussed towards selecting particular groups of
activities and the relative position does not appear to be
so critical. Todd believed that it would be possible to
determine a structure for a genetic algorithm that would
be generally efficient throughout all combinatorial
problems, however this research indicates that the
structure of the optimisation algorithm is intrinsically
linked to the problem domain. Consequently, within the
application to the DSM problem, it is essential that the
most effective optimisation structure is utilized in order
to efficiently achieve an optimum sequence of activities.

3.1 Genetic Algorithms

Within this research, the general procedure for GAs
developed by Goldberg [10] has been used to enable
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the evolution of optimal sequences of activities. The
objective of the GA in this particular application
is to minimize a number of criteria that represent various
aspects of the performance of the process.

The GA developed within this system is generic in
nature using object-oriented design techniques and
allows the encoding of a sequence of any type of
information. Within this application, the chromosome is
encoded as a random sequence of activities, however
this may be changed without modifying any aspect of
the GA to represent a sequence of cities within the
TSP for example. Randomizing the sequence of
activities within the chromosome attempts to ensure
that the chromosome represents a unique point in the
solution space, such that a group of chromosomes are
randomly distributed throughout. In the case of the
DSM problem, the group of chromosomes, or initial
population, generally represent sequences of activities
that have poor process performance criteria.

The chromosomes are then evaluated within the DSM
with respect to the process performance criteria that has
been selected.

A Roulette-wheel type selection procedure is used
where each chromosome is given a portion of the wheel
that is proportional to its performance [10]. The wheel is
spun and the winning chromosome is passed through to
the next stage. Chromosomes with higher performance
characteristics therefore have a greater chance of
surviving, although it is possible for lower performance
chromosomes to be passed through.

Crossover and mutation operations are then per-
formed upon the selected chromosomes to produce the
next generation. Two parent chromosomes are selected
at random and removed from the population. The two
parents are then crossed based upon a probability of
crossover to produce two children containing genetic
information from both parents. Mutation works in a
similar manner on a single chromosome to produce a
small change in the parent. The crossover and mutation
operations encoded within this GA are listed within
Tables 1 and 2.

The new population is then re-evaluated with respect
to the process performance criteria. A check is made
to determine whether the GA has completed a certain
number of generations, finishing if it has, otherwise
repeating this evaluation, selection, crossover and
mutation processes.

Criteria may be selected for the basis of optimisation
using the Criteria Set-up area. The optimisation may be
either single criteria or multi-criteria where the indivi-
dual objectives are: minimization, maximization, target
value, or any combination.

After completion of the optimisation, a list of optimal
sequences is displayed within the solution table. The
table displays the sequence, the values for the criteria
selected, the fitness and the rank for each of the

Table 1. Crossover operators.

Initial Description Reference

1PX One point crossover
2PEX  Two point end crossover Murata & Ishibuchi [18]
2PCX  Two point centre crossover Murata & Ishibuchi [18]
2PECX Two point end/centre crossover Murata & Ishibuchi [18]
PBX Position based crossover Syswerda [31]

Murata & Ishibuchi [18]

IPX Independent position crossover Murata & Ishibuchi [18]
PMX Partially mapped crossover Goldberg & Lingle [8]
(0)¢ Ordered crossover Davis [4]

CX Cycle crossover Oliver et al. [19]

ERX Edge recombination crossover

EERX Enhanced edge recombination
crossover

SCX Subtour chunks crossover

AEX Alternating edges crossover

IX Inversion crossover

Whitley et al. [37]
Starkweather et al. [26]

Greffenstette et al. [11]
Greffenstette et al. [11]
Goldberg [9]

Table 2. Mutation Operations.

Initial Description Reference

20RS Two Operation Random Swap Murata & Ishibuchi [18]
20AS Two Operation Adjacent Swap Murata & Ishibuchi [18]
30RS Three Operation Random Swap Murata & Ishibuchi [18]
30AS Three Operation Adjacent Swap Murata & Ishibuchi [18]
SOM  Shift Operation Mutation Murata & Ishibuchi [18]

solutions. For single criteria problems, the genetic
algorithm will produce solutions that have a near-
optimal value for the selected criterion, whereas for
multi-criteria problems, the genetic algorithm will
produce a number of solutions that represent the
trade-off between the criteria. Clicking on one of the
optimum solutions within the solution table will change
and display the sequence of activities within the DSM.

A number of criteria have been included for
evaluation within the DSM model that represent
partitioning (iteration) and concurrency performance
measurements for the process — Equations (1)—(5). The
DSM model may however have any number of
performance criteria included to increase the diversity
of the optimisation. Work is currently ongoing to
determine additional metrics and their applicability to
process performance [12].

Kusiak triangularisation [15,16] — Equation (1)
represents the summation of the dependencies above
the leading-diagonal on the basis of their weight. No
consideration is given for the dependency’s distance
from the diagonal and consequently has no effect upon
the size of iterative blocks. Minimisation of this criterion
will reduce the number of iterative blocks.

Gebala partitioning [7] — Equation (2) represents the
summation of the dependencies above the leading-
diagonal multiplied by their distance from the leading-
diagonal on the basis of their weight. The focus of
Gebala partitioning is therefore to get as many
dependencies either: below the leading diagonal, or, as
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close to the leading diagonal as possible. Minimization
of this criterion will reduce the size and number of the
iterative blocks.

Scott partitioning [25] — Equation (3) is similar to
Gebala partitioning except that each dependency is
weighted with respect to its distance from the bottom
left-hand corner. The weighting is also greater for
dependencies above the leading-diagonal. Minimization
of this criterion will primarily reduce the size and
number of iterative blocks, as well as attempt to move to
the dependencies into the bottom left-hand corner.

Kusiak Triangularisation = Z Z z+1 (1)

((j=1i) x wij)
@)

Gebala Partitioning = Z{ ] Z

j=i+1

Scott Partitioning = Z:l: 1 Z;:l (Qijxwiy) ()
Todd Concurrency (1) = 27:1 Z;;]

(jxwi) @

— l) X W,"_/‘)

(%)

Todd Concurrency (2) = Zf: 1 Z:: (@

where, n is the number of activities in the DSM, 7 and j

are the row and column indices, w;; are the dependency
weights, and,

=(Ix[j+@n—1P) forj<i

Qij= (100 x [j+(n—1F) fori<j

Minimization of the Todd concurrency criteria [32] —
Equations (4) and (5) will result with dependencies on
the left and bottom respectively. This has an impact
upon the level of parallelization that is possible.

The criteria are automatically updated when new
activities are added to the matrix, or when activity
dependencies are changed, and are displayed within the
criteria dialog.

4. Results

A number of investigations were undertaken to
determine the most efficient structure for the gene-
tic algorithm with respect to optimizing the DSM. The
structure for the GA is defined here as the settings

for: the crossover operator; the mutation operator;
the crossover probability; the mutation probability; the
population size, and, the number of generations. A
number of assumptions were made to limit the size of
the problem:

e Interactions may exist between the crossover and
mutation operators. If this assumption is correct,
variation within the efficiency of the mutation
operators with respect to the crossover operators,
and vice versa should be observed.

e The interactions between the crossover and mutation
operators, and the crossover and mutation probabil-
ities are weak, and hence may be neglected.
Neglecting interactions between the crossover and
mutation operators and their probabilities assumes
that varying the probabilities of the operators has the
same effect on each operator combination.

e No interactions exist between the operators, their
probabilities, and the population size and number of
generations. It was assumed that the operators and
probabilities are specific to the particular application,
whilst the population size and number of generations
are linked to the size of the optimisation problem
(number of activities within the process).

These three assumptions enabled the investigation
to be undertaken in three stages. Firstly, given a suitable
matrix, determine the most efficient combination
of crossover and mutation operators. Secondly, using
these operators, determine the most efficient crossover
and mutation probabilities. Finally, using a range
of different sized matrices and the operators and pro-
babilities, determine the relationship between the
problem size and the population size and number of
generations.

4.1 Crossover and Mutation Operators

The matrix used to determine the most efficient
combination of crossover and mutation operators was
taken from Steward [28]. The process consisted of 20
activities with a considerable amount of feedback loops,
and giving 2.433 x 10'® possible activity sequences. The
population size and number of generations were set at
100, whilst the crossover and mutation probabilities
were set at 60 and 5% respectively. These probability
values were selected based upon the conclusions made
by Todd [32]. Each combination of crossover and
mutation operators was investigated and repeated 30
times. The mean and standard deviation of the 30 results
were determined to account for the natural variation in
solutions resulting from the stochastic nature of the
algorithm. These results may be seen within Tables 3
and 4 for the mean and standard deviation respectively.
A single criterion (Scott partitioning — Equation (3))
was used throughout to simplify the investigation.
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Table 3. Mean values for crossover and mutation
operators.

20RS 20AS 30RS 30AS SOM Average

1PX 424595 498427 426575 433840 405402 437768
2PEX 374397 422115 407489 399138 362398 393107
2PCX 365555 373827 389266 383751 359898 374460
2PECX 356132 369063 370028 353402 354381 360601
PBX 357865 363566 351037 355036 354525 356406
IPX 344410 339825 346305 346199 331332 341614
PMX 442376 451874 457672 394614 377442 424795
OX 601308
CX 475593 498764 511608 470901 428258 477025
ERX 5840458592868578235M60401485581 141l 583455
EERX 5641508622321 556985858491 33534098 572493
SCX 457707 438500 480287 418604 480056 455031
AEX 502735 [RPEIRP SRRPEGE 517548 522284 520992
IX 435613 483759 432953 462721 409439 444897
Average 447572 469686 459779 452113 434210

Low 331332 428328
Medium 428328 525325

High

Table 4. Standard deviation values for crossover and
mutation operators.

20RS 20AS 30RS 30AS SOM Average

1PX 54904 45789 55811 61457 | 62119
2PEX 40076 66045 50495 32085 30295 43799
2PCX 34197 46116 58220 57040 45730 48261
2PECX 40082 36261 41954 34562 52847 41141

PBX 32405 37705 31318 31707 29985 32624
IPX 24566 30926 22471 32851 25204 27204
PMX 45290 44973 62122 54823 50269 51495
OX
CX 52054 73072 71012 61613 52402 62030
ERX 03825y ATV 795600 77980 iS850 82205
EERX  GKERE 805120100107j75772]l 84804
SCX 59072 60965 60556 55720 66727 60608
AEX [ZEE}] 68688 62681 68376 [EEN)] 70419
IX 43287 62190 53755 69362 42663 54251

Average 54853 61095 56767 (57776 55718

Low 22471 48349
Medium 48349 74228

High

Table 3 indicates the mean results for each crossover
and mutation operator. The range of results was used to
determine three regions: effective combination (white);
reasonable combination (grey), and, ineffective combi-
nation (black). What is immediately obvious is that the
assumptions made by Todd: that generic combinatorial
operators may be determined using the TSP and applied
to the DSM are incorrect. More importantly, the
operators selected by Todd (EERX and 20RS) are
amongst the worst for this particular application. The
results indicated that the IPX operator outperformed
the other crossover operators, with the best combination

being for the IPX crossover and SOM mutation
operators.

It is also important, although rarely undertaken, to
consider the variation from the mean to ensure
consistency within future investigations. Table 4 repre-
sents the standard deviation of the Scott partitioning
criterion using the same representation as Table 3.

It would have been possible to present both Tables 3
and 4 within a single table using a Signal-to-Noise (SN)
ratio, however it was considered that a separate
investigation would prove more enlightening. Table 4
suggests that the standard deviation has a similar degree
of variability across the combinations of operators
as that for the mean. It can be seen from Table 4 that
the IPX crossover operator again gives the best
performance with respect to the standard deviation,
however the IPX-30RS combination has the lowest
value for the standard deviation. Priority was however
given towards the combination selected from the
mean analysis, which also had a relatively small
standard deviation, hence the independent position
based crossover and shift mutation operators were
selected as being the most effective.

Tables 3 and 4 indicate that the interaction between
the crossover and mutation operators is relatively weak.

4.2 Crossover and Mutation Probability

Given the PBX-SOM operator combination,
the probabilities of crossover and mutation were
varied to determine the most efficient values. The
investigation was conducted in a similar manner as
that used to determine the operators. The crossover
and mutation probabilities were varied between 0
and 100% in 20% intervals. The results for 0%
crossover — 0% mutation, and 20% crossover — 0%
mutation were found to perform extremely poorly and
were omitted from the table. Previous investigations of
the mutation probability have provided conflicting
results [22,32].

The results indicated that having either no crossover
or mutation, or having high values for the mutation
probability are to be avoided when using a genetic
algorithm to optimize the DSM. It also indicates
that higher values for the mutation operator than
those previously suggested for the probabilities yield
further improvements than those obtained from the
operator investigation. The investigation demonstrated
that 60% crossover and 20% mutation probabilities
result with both a low mean and standard deviation,
although lower combinations do exist for the standard
deviation.

Using these probability values, the mean has been
reduced further compared to previously recommended
values [22,32], whereas the standard deviation has
reduced considerably.
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Table 5. Matrices used for investigation.

Matrix N° Activities Size % Search

Gebala [7] 12 ~40 3.34x107°
Steward [28] 16 ~50 1.19x1071°
Steward [28] 20 ~70 2,01 x107'®
Steward [29] 34 ~120 4.88x107%°
Austin [1] 51 ~180 2.09 x 10762

Additional tests have been undertaken using different
operator combinations producing similar results for
the IPX-SOM combination [35]. These tests indicate
that there is little interaction between the selection
of the operators and the selection of the probabilities.

4.3 Population Size and Number of Generations

A number of different matrices were used to
determine the relationship between the number of
activities within the DSM and the population size
and number of generations required to produce a
near-optimal solution without unnecessary computa-
tion. These matrices and the results from the investiga-
tion are presented within Table 5. The IPX-SOM
operator combination was used throughout the investi-
gation, and the crossover and mutation probabilities
were held constant at 60 and 20% respectively. Each
matrix was tested at a number of different population/
generation sizes with both the population size
and number of generations given the same value. This
investigation was conducted in a similar manner as
the previous two investigations by repeating the
analysis 30 times to determine the mean and standard
deviation.

The results from the investigation for the 34 activity
Steward matrix indicated that the mean value for the
Scott partitioning criterion asymptotically approached a
near-optimum value of approximately 3,420,000. The
GA performed well for a population size and generation
count of 120, with the standard deviation for the
Scott partitioning criterion asymptotically approaching
a value of approximately 70,000. If a value of 120
was selected for both the population size and number
of generations, the GA will have performed a search
of approximately 4.88 x 10723% of the possible number
of activity sequences.

This process was repeated for the other matrices and
the required population size and number of generations
determined. This information can be seen within Figure 2
representing the relationship between the number of
activities within the process and the population size and
number of generations required to produce a near-
optimal solution without unnecessary computation. The
relationship can be seen to follow a linear trend,
indicating that approximate values for the population

Size
)
)

80
60 //
40

0 20 40 60
Activities

Figure 2. Relationship between number of activities and population
size and number of generations.

size and number of generations may be determined using
Equation (6).

Size = 3.63 x n — 4.67 (6)

where size represents both the value for the population
size and the number of generations.

5. Multi-criteria Optimisation Results

The test case used to demonstrate multi-criteria
optimisation is taken from Steward [28] and consists
of 16 activities. Two criteria were selected from the
optimisation dialog: Scott Partitioning — Equation (3),
and, Todd concurrency (2) — Equation (5). The two
criteria represent an interesting trade-off since minimis-
ing the Scott Partitioning criteria will attempt to move
the dependencies below the leading diagonal, whereas
minimizing the Todd concurrency criteria will attempt
to move the dependencies towards the bottom of the
matrix. In theory, it should be possible to minimize both
criteria simultaneously and produce one solution which
has all of the dependencies towards the bottom of the
lower triangle, however in practice, processes are not
that well-behaved, and it was apparent that a weak
trade-off existed between the two criteria.

The optimisation was undertaken using the struc-
ture determined within Section 4, producing 15
Pareto-optimal sequences. The original sequence
quoted in [28] is given as a reference point (Sequence 1)
and all other sequences are compared against it to deter-
mine the percentage reduction in the two criteria
selected. Sequence 8 represented the greatest reduction
in the Scott partitioning criteria (61.9%), whilst
Sequence 13 represented the greatest reduction in
the Todd concurrency criteria (36.6%). It is interesting
to note from the solutions that certain sub-sequences
are prevalent (6,1,13,8,10) and (15,4,14,16) with
various combinations, suggesting that these sub-
sequences are significant with respect to reducing
these criteria, and attempts should be made to
maintain the sub-sequences if the sequence needs to
be changed.
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6. Conclusions

The paper demonstrates the application of a GA
to the optimisation of the sequence of activities
using the DSM process modelling technique. A
system was developed using the Java programming
language to enable processes to be created, managed
and optimized using the DSM technique. The focus
of this paper was the determination of the most
efficient structure for the GA, such that near-
optimal activity sequences may be obtained consis-
tently and without unnecessary computation. The
structure is defined here as the crossover and mutation
operators, the crossover and mutation probabilities,
and, the population size and number of generations.
Previous work has demonstrated that the structure
of the GA is implicitly linked to the particular
application [35], hence knowledge and understand-
ing of the GA structure with respect to process
optimisation is essential in ensuring that inefficient
structures are not used to optimize these difficult types
of problems.

The results indicate that the independent position
crossover operator [31] and the shift mutation
operator [18] was the most successful combination of
operators. The most efficient crossover and mutation
probabilities were found to be approximately 60 and
20% respectively. A relationship was determined to
enable the estimation of the population size and
number of generations based upon the number
of activities within the process. This relationship is
useful in determining the size of the search space
required to ensure a near-optimal solution for
problems larger than those considered within this
investigation.

The objective of the investigation was to reorder the
activities in order to minimize the optimisation criteria
without either removing or de-coupling activities to
produce a near optimum result with the information
provided. Further improvements may however be
achieved using techniques such as tearing [27] where
dependencies that are estimated are removed from the
matrix such that when the activities are reordered, the
number of dependencies above the diagonal are mini-
mized. Such techniques however required a knowledge
and understanding of the process that is not represented
within the DSM.
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