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******* 

Abstract 

Friction Stir Welding is a solid state welding process widely used to fabricate aluminium, magnesium 
and copper structures across a broad range of industries where high strength welds are required in 
safety critical applications. Work is underway to transfer the process into the fabrication of steel 
structures, bringing to steel fabrication the benefits of high strength, low distortion, enhanced fatigue 
life and improved toughness. These property enhancements are of particular benefit to the marine 
sector, where the additional abilities of the FSW to join dissimilar steels, for example carbon to 
stainless, and its potential reduced susceptibility to hydrogen embrittlement are also likely to be of 
great interest. This paper reports work undertaken as part of the EU funded project HILDA, an 
investigation into the potential of FSW to be utilised for the fabrication of ship structures from 6mm 
thick DH36 steel. 
 

******* 

Friction stir welding of steel for marine applications 

In 1991 friction stir welding (FSW) was invented at TWI by Wayne Thomas. FSW is a solid state 

process more akin to forge welding than to casting and was originally developed for the welding of 

aluminium and magnesium which are considered to be rather more difficult to fusion weld than many 

other materials – e.g. iron and steel.  

As is shown in Figure 1, friction stir welding uses a rotating tool to generate frictional heating at the 

interface between two pieces of metal. As the metal becomes heated it softens and the tool embeds, 

generating further heating and plasticisation of the metal by a combination of friction and adiabatic 

shear. When a suitable degree of plasticisation is reached, usually coinciding with a local temperature 
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of around two thirds the melting point of the metal, the tool begins to traverse along the joint interface, 

transferring metal across the joint line. As the tool moves on this transferred metal cools and is 

consolidated by the forging action of the tool shoulder, resulting is a solid state weld being formed. 

The material in the vicinity of the joint undergoes metallurgical change, being worked and 

experiencing various degrees of heating, recovery and recrystallization according to its position and 

the local temperatures attained. Surface quality of the weld is excellent, and distortion is low, as can 

be seen in Figure 2, a weld made, in a single pass, in 6 mm thick steel. 

Friction stir welding has been shown to have many benefits, both in terms of the weld itself and the 

economics and ease of application of the welding process. It has therefore quickly become the 

process of choice for the fabrication of aluminium and magnesium structures as diverse as aircraft 

wings and fuselages, automotive wheels and roof boxes, space rockets, fast ferries and catamarans, 

train carriages and iMac computers.  

Amongst the proven benefits of the FSW process are: 

 Very good mechanical properties in the as-welded condition 

 Weld induced distortion is very low 

 Post welding cleaning and machining is minimal 

 No requirement for filler metal 

 No requirement for shielding gas when welding aluminium or magnesium 

 Able to weld aluminium up to 75mm thick in a single pass 

 No ultra-violet of electromagnetic radiation 

 No molten metal hazard 

 No fumes 

 Can weld vertically and upside down as there is no gravitational effect on the weld zone 

 The process works underwater 

 The process is mechanised and requires less operator skill than fusion welding 

 The process is repeatable 

 The process uses less energy and has reduced environmental impact than fusion welding 

Given the many technical, environmental and economic advantages of the friction stir welding 

process, TWI and other research centres have sought to introduce the process to the welding of steel. 

Successful friction stir welds in steel were made by Thomas et al at an early stage in the development 

of the FSW process but these were limited in size by the difficulties faced in developing effective tools 

for stirring steel. However, within the last few years tool development has made some significant 

steps forward and it has become possible to make industrially useful lengths of weld in steel by the 

friction stir welding process. The FSW process is still relatively immature in steel, and the welds made 

expensive, but evidence is emerging that the welds made have considerably enhanced properties that 

can partially offset their current high cost. Work is ongoing to improve the tools yet further and bring 

down their cost. 

To further develop the process of steel FSW for marine applications, the University of Strathclyde is 

coordinating an EU project, HILDA (High Integrity Low Distortion Assembly) with 7 partners from the 

European maritime sector. Its main focus is on FSW of steel grade DH36, a low alloy steel utilised in 

the European shipbuilding industry. For FSW of steel to become economically and technically viable 

for introduction in the shipbuilding industry, it should evolve into a process competitive with 

conventional fusion welding methods. In the shipbuilding sector, this requirement is translated into 

high speed welds (in millimetres per minute) of acceptable quality. HILDA therefore seeks to assess 

both the technical quality of FSW in steel, and to assess the potential production economics of the 

process.  



FSW of steel is expected to deliver substantial commercial and technical benefits to the marine 

manufacturing sector such as reduced pre-weld preparation and re-work, manpower savings, scope 

for redesign of assembly lines, and low distortion, high quality welds of excellent fatigue properties. In 

one example from FSW of aluminium, Norwegian shipyard Fjellstrand reported that “using 

prefabricated FSW panels has enabled a 40% increase in production capacity and turn-over at the 

yard”. Issues associated with setup, fixture and tooling costs along with reduced health and safety, 

training, consumable and material usage costs compared to conventional fusion welding techniques 

should also influence the introduction of this innovative welding process in industry if it can be 

transferred into welding steel. There are a number of currently identified obstacles, deeper scientific 

understanding of the process on steel, engagement with the shipbuilding industry, use of fillet welds, 

different thicknesses and joint design, which will be required to overcome before full acceptance of 

the process is achieved. 

Work at TWI has shown that friction stir welding is capable of welding all the grades of steel 

attempted to date, including those such as ODS (Oxide Dispersion Strengthened) or high carbon tool 

steels that are considered difficult or even impossible to weld satisfactorily by fusion techniques. The 

joining of dissimilar grades of steel appears to present no major obstacles, for example carbon steels 

have been welded to stainless steels. A major benefit is that when friction stir welding duplex stainless 

steels the austenite:ferrite phase balance is retained, thus the indications are that the corrosion 

performance of the weld will match that of the parent material. Table 1 shows a range of steels that 

have successfully been friction stir welded. 

A significant effort is now underway to begin generating mechanical property and microstructural data 

for friction stir welds in typical marine engineering steels such as DH36. This latter task is of vital 

importance if the process is to be adopted for the fabrication of steel structures and for a variety of 

reasons. Of primary importance, friction stir welds will not be permitted in safety critical steel 

structures if their performance is an unknown quantity. To assist in establishing this, Lloyds’ Register 

is a partner in the HILDA consortium and involved in the development of classification guidelines for 

the process.  

Microstructural characterisation is the first experimental step towards establishing the limits of the 

FSW process. It is a fundamental stage as, through its relationship to predicting the mechanical 

properties of the weld, an understanding of the microstructure develops important information 

regarding the properties that are likely to be attained in the weld zone. A secondary outcome of the 

microstructural assessment is to provide information related to undesirable process induced defects 

or flaws that could compromise the integrity of the weld, the absence of which provides reassurance 

that the weld process parameters reported will lead to an acceptable level of quality. A summary of 

these features are reported herein. 

To assess microstructure, samples were transversely sectioned from a random position within the 

steady state condition region of each of nineteen 2m long test welds. These welds were made using 

different welding parameters, and fell broadly into three classes: slow welds made at welding speeds 

below 200 mm/min, intermediate welds made at speeds between 200 and 400 mm/min, and fast 

welds made at speeds between 400 and 700 mm/min.  In the steady state region, the forces that the 

FSW tool sustains stabilise, the weld quality is improved, and any sample removed from any position 

within the steady state region is expected to be representative of the properties of the entire weld. The 

region of steady state condition is commonly identified by visual observation of the welded plates (a 

good quality surface without excessive flash formation, voids or cracks), and confirmed by analysis of 

the forces (on the longitudinal and vertical direction) on the tool; this is typically established beyond 

the first 150 mm of welding. 

Macrographic examination is widely used as the first stage of the microstructural characterisation 

process as it can often highlight regions of interest that require more detailed examination within the 

weld region. Figure 3 shows a macrograph of a typical FSW in 6 mm thick DH36 steel. As can be 



seen, the macrostructure is relatively fine grained with no evidence of the large heat affected zone , 

grain growth and solidification & shrinkage defects associated with traditional fusion welding.  

More detailed examination was performed with the aid of a light optical microscope that involved 

taking several micrographic images from each sample being studied. The following nomenclature is 

adopted in the present study and the main regions of the weld zone are illustrated in Figure 1, where: 

 AD: Advancing side, the side where the rotating FSW tool pushes the metal towards the weld 

direction, i.e. forwards. The convention employed for the entire project is that samples are 

prepared so that the advancing side is presented on the left side of all images. 

 RT: Retreating side, the side where the rotating tool pushes the metal in a direction opposite 

to the weld direction, i.e. backwards. 

 TMAZ: Thermo-mechanically affected zone in which the material has been thermo-

mechanically stirred. 

 Weld root: part of TMAZ, around and below the tip of the FSW tool’s pin. 

 HAZ: Heat affected zone, where the metal has been affected by heat but not mechanically 

stirred. 

 PM: Parent material, metal not affected by the process. 

The group of slow welds presented a very homogeneous microstructure without any flaws. These 

exhibited a ferrite rich microstructure with highly refined grains of random geometry. A very small 

content of acicular-shaped bainitic ferrite was in one of the slow speed welds (Figure 4a), the content 

of which was seen to steadily increase with increasing traverse speed and constant rotational speed 

(200 rpm). This observation suggests that the cooling rate is increasing with increasing traverse 

speed. Additionally, there appears to be a threshold value of approximately 130 mm/min above which 

acicular-shaped bainitic ferrite appears at a small ratio relative to the above described ferrite rich 

microstructure. 

In the intermediate group of welds with rotational speed of 400 rpm and as traverse speed is seen to 

increase, the microstructure becomes more heterogeneous, with regions of increasing bainite content 

(suggesting an increased cooling rate). However, this heterogeneous microstructure does not seem to 

have a significant effect on the mechanical properties. Still, one intermediate weld is very 

homogeneous, with an acicular-shaped bainitic ferrite microstructure (Figure 4b); this would suggest 

that a good balance of rotational and traverse speed has been achieved. Overall, the FSW process 

appears to be tolerant to welding speed variations at the 450 rpm rotational speed. Both welds in this 

intermediate group exhibit a homogeneous, fully acicular-shaped bainitic ferrite microstructure with 

prior austenite grain boundaries as shown in Figure 4c. 

At the fast welding speed of 500 mm/min and above, the microstructure of all five welds becomes 

very heterogeneous, with poorly mixed regions of acicular ferrite and varying bainite content. The 

presence of bainite has increased considerably in this group due to the even higher cooling rate that it 

is expected to occur. Prior austenite grain boundaries are easily detected on the regions of bainite 

predominant microstructure. Two distinct microstructures co-exist within the TMAZ of one of the fast 

welds (Figure 4d); these would be expected to act as stress concentration regions. Yet, this weld’s 

parameters seem to have achieved a good balance of traverse and rotational speed that is translated 

into satisfactory tensile behaviour. This could be attributed to the grain refinement and a suitable ratio 

of microstructures overtaking the negative effects of heterogeneity. 

It is worthy of note that at faster welding speeds the process becomes very sensitive to parameters 

change, i.e. variations in rotational speed in this group of welds. However, no voids or cracks or 



others flaws are detected in the bulk of the weld zone (TMAZ), and especially in the top advancing 

side where the shear forces on the metal are expected to be the highest. Hence, high speed FSW of 

steel grade DH36 is feasible; the process is tolerant to parameter variation in low and intermediate 

speeds but less tolerant at the highest speed (500 mm/min). 

Mechanical property assessment 

Sixty transverse tensile tests (extracted from the slow, intermediate and fast weld speeds) were 

performed on an Instron 8802 servo-hydraulic uniaxial tensile testing system in accordance with ISO 

Standards. The following general results were observed: 

 All slow and intermediate weld samples failed in the parent material in a typical ductile 

fracture. This suggests that these fifteen sets of weld parameters produced welds of higher 

strength than the parent material. 

 Four out of the five fast welds failed in the outer boundary of the advancing side of the weld 

zone in a brittle manner. This fracture region appears to correspond to the top AD TMAZ 

region where non-metallic inclusions were found to be interconnected in an incomplete fusion 

characteristic (i.e. cracks). 

 One of the fast welds failed in the parent material although exhibiting a very heterogeneous 

microstructure with possible stress concentration regions. It would appear that this set of 

parameters achieves a good balance of rotational speed (sufficient heat input for proper 

thermo-mechanical stirring) and traverse speed (affecting the cooling rate which governs the 

ratio of phases) to produce acceptable quality welds. 

Concluding remarks 

Friction stir welding of steel has been shown to technically possible, capable of producing welds 

whose properties can exceed these of fusion processes and is a technique that is demonstrating a 

useful degree of industrial robustness. Though the friction stir welding of steel is still considerably 

more expensive than conventional arc welding processes, and is likely to remain so for some time, for 

a growing number of applications that require enhanced weld properties it is now approaching 

economic viability. The ability of the process to produce excellent welds underwater, and also to 

produce welds that are likely to be tolerant of radiation induced damaged, is generating considerable 

interest in the marine and nuclear engineering communities. As the process is mechanised, it can 

also be performed robotically, further opening the prospect of fabrication and repair applications 

where it would not be possible to undertake manual welding, for example deep underwater, inside 

reactor shells and in nuclear fuel storage ponds. 

In terms of technical achievements,  

 The welding (traverse) speed has been increased substantially compared to almost a year 

ago. Welds speeds have been raised from 100 mm/min to in excess of 500 mm/min. This 

represents considerable potential economic advantages in terms of the competitiveness of 

FSW to conventional fusion welding processes. 

 An initial understanding of the relationship between weld parameters and the effect of these 

on weld microstructures and mechanical properties has been established. From this, it is 

evident that FSW generates a very complex metallurgical system. 

 A preliminary FSW parameter envelope has been generated based on the outcomes of 

microstructural evaluation and mechanical testing. Further refinement is on-going.  



 A number of weld parameters have been identified which may produce very fast welds of 

acceptable quality that are highly competitive to conventional fusion welding techniques, and 

a programme of classification compliance testing is currently being planned in collaboration 

with Lloyd’s Register. 

 A detailed thermo-mechanical deformation study has been undertaken, generating data not 

previously available for steel grade DH36, and serving as a fundamental building block for a 

local microstructural numerical model. 

 Key aspects of FSW of steel such as fillet welds, design and development of new tool 

materials and controlled heating and cooling through the use of backing strips have been 

identified as highly worthy of further examination. 
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Figure 1. The basic principle of friction stir welding. 

 

  



Figure 2. Demonstration of low distortion in a 6m long weld made in a single pass in 6 mm thick steel 

 

  



Figure 3 Single pass friction stir weld in 6mm thick carbon steel 

 

 

 

  



Figure 4. Microstructure of mid-TMAZ [x1000, Etched] (a) Slow; (b) Intermediate 1; (c) Intermediate 2; 

(d) Fast 
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Table 1  A range of steels that have been friction stir welded 

Generic type Grade 

 
 
 
 

Carbon steels 

AISI 1018, 1060, 1085 

A36 

S275, S355, S690 

API X 65, X80, L80, X100 

EH36, DH36, EH46 

HSLA-65 

HY-80, HY-100 

D2 , O1 
 
 
 

Stainless steels 

304, 304 L, 316 

420A, 420B, 420C 

RWL34 

12C27 

S32205 duplex 
 

ODS and precipitation hardened steels 
20Cr5Al  

PM2000, MA957 

PH14, PH17 
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