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† Institut Non Linéaire de Nice, UMR 7335 CNRS, 1361 route des Lucioles, 06560 Valbonne, France

‡ Email: thorsten.ackemann@strath.ac.uk

Abstract—We discuss the formation of optomechanical struc-
tures from the interaction between linear dielectric scatterers
and a light field via dipole forces without the need for optical
nonlinearities. The experiment uses a high density sample of
Rb atoms in a single mirror feedback geometry. We observe
hexagonal structures in the light field and a complementary
honeycomb pattern in the atomic density. Different theoretical
approaches are discussed assuming either viscous damping of
the atomic velocity or not. The interplay between electronic and
optomechanical nonlinearities is analyzed. A prediction for dissi-
pative light - matter density solitons is given. The investigations
demonstrate novel prospects for the manipulation of matter in
a pattern forming system in which quantum effects should be
accessible.

I. INTRODUCTION

Spontaneous self-organization of coupled light-matter sys-
tems due to optomechanical effects attracted a lot of attention
in recent years [1]–[10]. Typically, in these systems a pump
field interacts with a cloud of cold atoms or a quantum
degenerate state and an additional field arises spontaneously
along the same or another axis. The interference of these two
fields generates a light pattern which causes a bunching of the
cold atoms due to dipole forces. The resulting density grating
scatters then pump light into the instability mode, which sus-
tains the instability. The emerging field is coherent, i.e. these
instabilities can be understood as a kind of unconventional
lasing where the gain arises from four-wave mixing and the
‘mirrors’ stem from distributed feedback from self-pumped
[5], [6] or externally induced [11] density modulations. In the
simple one-dimensional (1D) case where pump and emerging
field are co-propagating this was coined collective atomic
recoil lasing (CARL, [1], [5], [6]).

Another intriguing aspect is spontaneous symmetry break-
ing which plays a key role in our understanding of nature and
self-organization. The spontaneously emerging field in [3], [4],
[7], [10] can have two possible phases which correspond to two
possible spatial phases of the density grating which the system
can choose spontaneously. However, in these experiments the
length scales (typically on the wavelength scale) and the
symmetry of the density patterns are completely determined by
the angle between the pumping field and another distinguished
axis along which the spontaneously generated field is scattered.
This second imposed axis might be a cavity axis [3], [4], [7],
[10], the long axis of an elongated condensate [2], [9] or a seed
beam [8]. In contrast, we are reporting on coupled density and

optical structures arising in the plane orthogonal (transverse) to
a single pump axis. In this scheme two continuous symmetries
(rotations and translations in the plane) are spontaneously
broken and the length scales of the resulting transverse struc-
tures (or the angle the instability sidebands enclose with
the pump axis) are resulting from longitudinal interference
conditions only. Corresponding structures are known from
hot atoms interacting with light [12]–[15] and are just one
example for spontaneous self-organization as it is ubiquitous in
systems driven out of thermal equilibrium in nonlinear science,
technology and nature.

In ensembles of hot atoms the dipole forces arising from
the modulated light field have a negligible influence on the
center-of-mass motion of the atoms and the resulting gratings
giving feedback are spatial modulations in the internal degrees
of freedom of the atoms like electronic states or Zeeman-
substates. However, for cold atoms optomechanical effects are
significant and an optomechanical nonlinearity can arise even
if the atoms can be considered as linear Rayleigh scatterers.
For a light field tuned to the blue (higher frequency) side of
the resonance, atoms are low-field seekers and are expelled
out of intensity maxima. As the refractive index seen by a blue
detuned field is negative, a reduction of atomic density implies
an increase of refractive index and the resulting nonlinearity
is self-focusing. In a first approximation, one can think of
a Kerr-like index, n(I) = n0 + n2I (n0 background index
of homogeneous medium without light, I intensity, n2 > 0
nonlinear coefficient), but one needs to keep in mind that the
nonlinearity is non-local in principle and mediated by transport
processes of matter. For negative detuning, the nonlinearity is
also-self-focusing, but matter is attracted to intensity maxima.
The latter case is well known for synthetic optical nonlinear-
ities in colloidal suspensions of dielectric beads [16], [17].
The case of negative polarizability corresponding to positive
detuning in atoms was realized only very recently in soft
matter systems [18]. It should be noted that dielectric beads
in suspension will always show a strong viscous coupling to
the environment whereas this coupling can be suppressed or
controlled in ensembles of cold atoms.

Theoretically, optomechanically induced density gratings in
a 2D plane orthogonal to a single pump axis were considered
in different geometries: single-pass propagation [19], counter-
propagating beams [20] and ring cavities [21]. First indica-
tions for transverse structure in a low aspect ratio situation
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Fig. 1. Scheme of experimental setup and mechanism of instability. Red:
density profile, green: refractive index profile, blue: intensity profile, dashed-
blue phase-profile, blue arrows: propagation direction of light. At a distance
2d after the medium, the feedback beam reentering the medium is reproduced
and can be detected with a camera.

were observed in counterpropagating beams in an elongated
cloud [8]. In our experiment we employ a simple feedback
scheme [22]–[24] based on the retro-reflection of the laser
beam passing through the atoms by a high-reflectivity plane
mirror at a distance d after the center of the medium (Fig. 1).
In its simplest case, the medium is assumed that be thin enough
that diffraction in the medium can be neglected compared
to the diffraction taking place in the feedback loop. Imagine
now a periodic perturbation of the atomic density leading to a
corresponding (but spatially anti-phase for positive detuning)
fluctuation of the refractive index. As the input beam passes
through the medium, the fluctuation in the index of refraction
induces phase fluctuations. After reflection by the mirror and
propagation back to the sample, these phase fluctuations have
turned to intensity fluctuations due to diffraction. This in turn
will change the density of the medium via dipole forces,
closing the feedback loop and leading to the growth of a
macroscopic modulation or pattern out of infinitesimally small
fluctuations. The length scale of the instability is given by
the Talbot effect [24], [25]: A spatial sideband propagating at
an angle Θ to the pump axis has a transverse wavenumber
q = Θk where k = 2π/λ is the wavenumber of the light.
It acquires a phase shift of exp (−iq2/(2k)δz) with respect
to the on-axis wave over a propagation distance δz. At the
distance where the phasor has the value of i or −i an initial
phase perturbation (with a phase of i between on-axis waves
and sidebands) will have been converted to an amplitude
modulation either spatially in phase or in anti-phase with
the original phase modulation. Positive feedback gives then
a length scale Λ = 2π/q of the emerging pattern of

Λ ≈
√
4dλ, (1)

for a self-focusing medium.
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Fig. 2. Typical hexagonal patterns observed in the transmitted beam: Re-
imaged (10 mm after cloud) near field intensity distribution of transmitted
pump (a) and probe (b) beam; b, d) numerically calculated Fourier transform
of a), d). The DC peak is capped to a value slightly above the amplitude of
the sidebands. Parameters for the pump beam: I = 129mW/cm2, δ = +7 Γ,
and d = 5 mm.

II. EXPERIMENT

In the experiment, a laser-cooled cloud of cold 87Rb with
a temperatures of about 290 µK is used. Doppler broadening
is negligible compared to the natural width Γ/(2π) = 6.06
MHz of the atomic transition (D2 line at λ = 780.2 nm). The
cloud has a roughly Gaussian density profile with dimensions
(full width at half maximum, FWHM) of 10×10×5 mm and
contains about 5 × 1010 atoms. The optical density (OD) in
line center is about 150. The experimental sequence alternates
a preparation stage where the atoms are trapped and cooled
in a magneto-optical trap (MOT), and a measurement stage
where the MOT (trapping lasers and magnetic field) is shut
down and the pump beam is turned on for a duration tpump.
This pump beam is spatially filtered by a single-mode fiber and
collimated to a spot size of 1.9 mm (FWHM). The experiment
is performed in the vicinity of the F = 2 → F ′ = 3
hyperfine transition, which is closed. A repumper tuned to the
F = 1 → F ′ = 2 transition counteracts hyperfine pumping
due to the residual excitation of other states. Typically, we
use linear input polarization, but the experiment works equally
well with circular input polarization. This, and an insensitivity
to the presence of magnetic fields of different configurations,
indicates that Zeeman pumping is not at the origin of the
observations.

Pattern formation is observed for a wide range of positive
detunings to the F = 2 → F ′ = 3 transition. Fig. 2a
shows a typical single-shot image. We observe high-contrast
positive hexagonal patterns. This hexagonal symmetry is also
evident in the numerically calculated Fourier transform of the
intensity distribution (Fig. 2b). The pump beam in the center
is suppressed for clarity and the six off-axis beam are the



spontaneously generated sidebands. They arise on top of a
faint ring in Fourier space which is the critical wavenumber
selected by the phase-amplitude conversion (in the simplest
case the Talbot effect in vacuum, Eq. 1, see [26] for the
experimental situation with a diffractively ‘thick’ cloud). The
sidebands break the rotational symmetry spontaneously (within
limitations imposed by unavoidable imperfections of any real
setup) as evidenced by shot-to-shot fluctuations.

Ten microseconds after the pump beam is switched off, a
weak probe beam, which does not experience feedback and
is detuned a few linewidth to the red side of the resonance,
is injected the medium. It shows a honeycomb pattern. This
is consistent with the expectation for dispersive imaging and
complementary patterns in the light field and the atomic
density. Atoms are expelled from the pump filament and gather
along the ridges of the honeycomb pattern, where they attract
the light of the negatively detuned probe beam due to the
enhancement of refractive index there.

Even more importantly, the presence of a structure a few
microseconds after the pump beam is switched off excludes
electronic excitation, i.e. a population of the excited state, as
the source of the atomic grating, as it should decay in a few
times the natural lifetime of Γ−1 ≈ 26 ns. The time scale
of the probe pattern decay of about 80 µs and corresponding
measurements of the turn-on dynamics [26] are compatible
though with optomechanical dynamics and hence we conclude
on the presence of a significant density grating.

III. THEORY: PATTERNS

In the theoretical description, the state of the cloud is de-
scribed by its phase-space distribution function f = f(x,v, t)
(with x and v position and velocity vectors in the plane
transverse to the field propagation, respectively). Its dynamics
is described by a collision-less Boltzmann equation with a
driving term given by the dipole force:

∂f

∂t
+ v · ∂f

∂x
+

Fdip
M

· ∂f
∂v

= 0 . (2)

Here M is the atomic mass and Fdip = −∂xUdip the dipole
force with Udip = (h̄δ/2) log(1 + s(x, t)), and s is the
saturation parameter, i.e. the intensity divided by the saturation
intensity. The spatial density ρ(x, t) is obtained by integrating
f over the entire velocity space, with the normalization chosen
so that the spatially homogeneous solution corresponds to
ρ = 1. The saturation parameter s is given by the sum of
the suitably normalized intensities of the forward field gF and
the backward field gB , i.e. s = |gF |2 + |gB |2.

Neglecting diffraction effects inside the cloud (thin medium
approximation), the interaction between a forward pump field
of amplitude gF and the cloud of laser-cooled two-level atoms
is described by the following equation

∂gF
∂z

= − OD(1− 2iδ/Γ)

2L [1 + 4(δ/Γ)2]

ρ

(1 + s)
gF , (3)

where L is the medium thickness. The 1/(1 + s) term de-
scribes electronic saturation and takes into account that in
the experiment optomechanical and electronic nonlinearities
are potentially simultaneously significant, at least in some
parameter regimes. To obtain gB , we first integrate Eq. (3)

under the assumption of a longitudinally homogeneous ρ and s
and obtain the transmitted field at the exit face of the medium.
The free-space propagation to the mirror (distance d) and back
can be solved exactly in Fourier space, see [27] for details.

Typical results obtained at high saturation parameter (far
above threshold) for a 1D geometry are shown in Fig. 3. For
short pump durations, a pattern develops in the light field. It is
accompanied by a pattern in the excited state (not shown). The
velocity distribution is not changed from the initial Maxwellian
one and the density remains flat. The interpretation is that, at
the high value of the saturation parameter used, the instability
can be triggered by electronic effects alone. If the pump is
acting for longer, the atoms are moving in the dipole potential
created by the modulated light field, a density modulation
evolves and the velocity distribution is modified. The contrast
of the light pattern is enhanced due to additional scattering
from the density grating. In this nonlinear growth regime, har-
monics of the fundamental wave number arise. Their strength
increases further for increasing pumping duration, as well as
the modulation depth of the density and the width of the
velocity distribution. The long term saturation dynamics are
currently under investigation.

In contrast, for lower input saturation value (close to
threshold), light and density patterns develop together and on
time scales in the tens to hundreds of microsecond range. In
this regime, the optomechanical instability alone is sufficient
to trigger the instability [26]. Corresponding regimes are
identified in the experiment [26]. It should be stressed that
the optomechanical nonlinearity alone is sufficient to induce
the instability [27]. The threshold for the mixed electronic-
optomechanical case is much closer to the purely optomechan-
ical threshold than to the purely electronic one, supporting
that the regime close to threshold is indeed dominated by the
optoelectronic nonlinearity.

IV. THEORETICAL PREDICTION OF LOCALIZED STATES

Close to threshold hexagonal patterns typically possess the
intriguing feature that individual constituents of the pattern
can serve as ‘dissipative solitons’ [28]–[30]. In a region of
bistability between the homogeneous state and the hexago-
nal pattern below the threshold for pattern formation, self-
sustained localized excitations can exist on the homogeneous
background, which can be written and erased again ‘at will’
by external perturbations, in optics conveniently via focused
control pulses [31]. We study this phenomenon in a model with
velocity damping following [20]. In an experiment, velocity
damping can be provided by a 3D optical molasses [20], [32],
[33]. Though a corresponding model can and was developed
for the single-mirror case, results are currently available only
for a cavity scheme, but are expected to carry over to the
single-mirror case. Details of the model can be found in [21],
[34], we reproduce here only the essential results on structures.

Figs. 4a), b) show a developed hexagonal pattern 5%
beyond threshold, obtained for a positive detuning of the pump
light to the atomic resonance. The patterns in intensity and
density are complementary as in the single-mirror system.
Hexagonal patterns persist down to 10% below threshold,
if the pump parameter is reduced again after the instability
took place. This means that the bifurcation is subcritical and
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Fig. 3. Saturation profile (a), density profile (b) and velocity profile (c), i.e. the integral of the distribution function over space, 5 µs after pump switch-on
(dashed black line) and 50 µs after pump switch-on (solid red line). Parameters: |gF |2 = 0.6 at input facet (purely electronic threshold at 0.2), δ = +10 Γ,
d = 5 mm, T = 300µK, OD = 200.

within the hysteresis loop the homogeneous state, patterns and
localized states can coexist. An example of a state with three
localized states is shown in Figs. 4c), d). Their positioning
and number is completely arbitrary and controllable by initial
conditions as long as they don’t come too close to interact [35].
In an experiment, a localized perturbation can be provided
by a writing beam coherent to the homogeneous pump using
constructive and destructive interference [36] or a writing beam
incoherent to the pump [31], [35]. In the optomechanical case,
incoherent writing can be implemented via a pulse slightly
detuned to the pump perturbing the density distribution via its
dipole potential. Note that depending on the pump detuning
holes or peaks can be imposed on the density and are sustained
after ignition by homogeneous driving only.

V. CONCLUSION

We demonstrated the spontaneous formation of coupled
light-density structures in a 2D plane transverse to a single
pump axis, breaking spontaneously two continuous symmetries
in that plane. Though some form of material transport via con-
vection (hydrodynamics), diffusion (chemistry and biology),
or charge drift (gas discharges) is often present in pattern-
forming systems, typically modulation of the overall matter
density is neither the decisive driver nor the manifestation of
self-organization. Hence, the self-structuring and manipulation
of the density of matter itself demonstrated here augments
the variety of pattern forming systems. Possibly even more
intriguing is the prospect of localized structures in the density
of matter, sustained by homogenous driving only.

Similar mechanism are expected to apply to instabilities in
the electron density in plasmas due to ponderomotive forces
[27] and structures in colloidal suspensions of dielectric beads,
for which up to no only 1D geometries with feedback were
explored [37].
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Fig. 4. Intensity (left column) and density (right column) obtained by a
2D numerical integration of a model including velocity damping. Upper row:
hexagonal structures, lower row: examples for localized states. The pump is
5% above threshold for the hexagons, 5% below threshold for the solitons,
other parameters as in [34].

From a quantum optical point of view it is interesting to
look at classical and non-classical correlations between the
fluctuations in the different sidebands and between the light
and matter waves. The coupled light-matter structure can be
interpreted as a self-induced and self-loaded optical lattice,
but in contrast to externally imposed optical lattices it is not
rigid but dynamic. This is likely to enable interesting studies
on the propagation of localized and periodic perturbations
(generalized ‘sound’) across the structure. Significant interest
exists in studying self-organization involving multiple spatial



modes in quantum degenerate matter, e.g. [38], [39]. As the
instability described here relies only on coherent processes
(diffraction and dipole forces) it should be extendable to
quantum degenerate gases. The interaction between optome-
chanics, matter wave coherence and potentially the intrinsic
matter wave nonlinearity is expected to lead to new interesting
phenomena.
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