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Abstract 

Counter propagating control and signal pulse interactions exist in many 
important optical components in fiber optical communication networks and ultra-fast 
signal processing systems employing semiconductor optical amplifiers. Challenges 
facing this particular interaction configuration are considered analytically. Signal pulse 
propagation is studied by solving its traveling-wave equation under a perturbation 
approximation with the control pulse arriving at the opposite side of the semiconductor 
optical amplifier. The derived analytical expressions of optical impulse response clearly 
elucidate the physics involved in counter-propagating configurations. 
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Semiconductor optical amplifiers (SOAs) are utilized in many important 
components such as demultiplexiers [1,2], clock extractors [3,4], wavelength converters 
[5,6,7], packet routers [7], format converters [8], switches and logic gates [2,9] in optical 
time division multiplexed (OTDM), wavelength division multiplexed (WDM) 
communication networks and ultrafast optical signal processing systems. Many 
applications employ the SOAs with control and signal pulses counter-propagating with 
respect to each other. In terahertz optical asymmetric demultiplexier (TOAD) of OTDM 
applications as indicated in Fig. 1 [1,2], for example, the two SOAs in upper and lower 
arms of a Mach-Zehnder interferometer are displaced slightly off with respect to each 
other. An input data signal is split into two parts which are counter propagating with 
respect to a control pulse that demultiplexs the input signal. The switching window is 
determined by the small displacement Ax, the length of the SOA, and the optical impulse 
responses of the SOA. Wavelength converters ensure dynamic routing and switching in 
WDM networks. The counter-propagating input signals are converted into a different 
wavelength in a Mach-Zehnder wavelength converter [5,6]. In nonlinear interferometer 
(UNI) all-optical logic gates [9], the counter-propagating configuration of the control and 
signal pulse allows the logic gates to be cascadable. The control and signal pulse can be 
easily separated in devices that employ counter-propagating configurations, avoiding 
cross-talk and allowing the devices to cascade. The optical impulse response of the 
SOAs under counter propagating signal and control pulses is important to understand the 
performance of the devices. 

OSA TOPS Vol. 32 Photonics in Switching 
Paul R. Prucnal and Daniel J. Blumenthal, eds. 
©2000 Optical Society of America 144 



Photonics in Switching 

Theoretical studies by Mark and Mecozzi [10] and experimental work by Hall, et 
al. [11] have investigated the optical impulse response of active waveguides such as 
SOAs using a co-propagation configuration. Counter-propagating pump-and-probe 
experiments on an SOA have been conducted by Kang, et al. providing information on 
both nonlinear phase and gain dynamics [12]. Their experiments concentrated on the 
longer time scale of carrier recovery dynamics, on the order of several hundred 
picoseconds. Carrier recovery time, differential gain, saturation energy and the linewidth 
enhancement factor of the SOA were measured simultaneously in these pump-and-probe 
experiments [13]. However, the fast nonlinear dynamics due to carrier heating (CH), 
two-photon absorption (TPA), spectral hole burning (SHB) and other fast nonlinear 
dynamic processes were not thoroughly investigated because of limited time resolution. 
In an attempt to analyze the TOAD switching window, an optical impulse response of the 
SOA has been proposed by Kang, et al., based on simple physical intuitions [14]. With 
this simple model, some of the experimental observations on TOAD switching windows 
can not be explained [15]. A more comprehensive model is needed. Up to now, a 
systematic theoretical analysis of the optical impulse response under counter-propagating 
geometry has not been studied. 

There are three different features or challenges in the counter-propagating 
configurations. First, the time delay between control and signal pulses changes as pulses 
propagate inside the SOA. Second, the location where the control and signal pulses meet 
depends on the initial time delay, defined as the arrival-time difference at the entrance of 
the SOA. Third, the boundary conditions of this geometry are different from co-
propagating configurations. The control and signal pulses arrive at the SOA at opposite 
ends. However, for a fixed initial time delay and a fixed signal pulse location, the SOA 
response functions of the different nonlinear processes are essentially same as that of a 
co-propagating configuration, because typical SOAs are made of zinc blende 
semiconductors having central symmetry [16]. The third order nonlinear susceptibility, 
from which the material response functions stem, is invariant when the control is flipped 
into a counter propagating direction with respect to signal signal. In this paper, we use 
the medium response functions given in reference [10] from semi-classical density matrix 
theory for cases of fixed initial time delays and signal pulse locations. We then solve the 
travelling wave equations while taking care of the three above-mentioned challenges. An 
analytic optical impulse response is obtained for counter-propagating pump-and-probe 
type configurations. 
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Photonics in Switching 

To avoid coherent artifacts [11,17], we consider only the orthogonal control 
(pump) and signal (probe) pulses. The theory presented can be extended to parallel 
control and signal polarization as long as coherent interference is considered [11]. Since 
the control and signal pulses counter propagate with respect to each other as illustrated in 
Fig. 2, the time delay between control and signal pulses depends on the location z. If we 
assume that the control and signal pulses arrive at the zero side of an SOA of length L at 
time tpo and tso, respectively, the initial time delay is T0 =tso -tpo. Because the control 

pulse takes less time z/vp while the signal pulse takes more time z/vs to arrive at the 
location z, the time delay at the location ^ is: 

Here, v stands for group velocity and subscripts p and s denote for control and signal 
signals, respectively. 
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Photonics in Switching 

Control and signal pulses are normally derived from the same laser having same 
temporal shape and variable time delay. The control pulse energy is typically orders of 
magnitude larger than that of the signal pulse [ 11,12]. Contribution of the signal pulse to 
nonlinear polarization is negligible. Therefore, the travelling wave equation of the total 
field, which is summation of control and signal fields, is separable. Introducing slowly 
varying envelopes for control Ep and signal Es pulses [10], noting that the control and 
signal pulses are orthogonal in polarization and propagate in opposite directions, we 
obtain the wave equations: 

Here, the linear operators Lp, Ls and nonlinear operators Rp, Rs are: 

Here, i = v-1 • The optical confinement factor T is used to account for the incomplete 
overlap of the transverse optical field distribution and the active region of the SOA. The 
parameters g, aint and K describe the gain, intrinsic absorption and wavenumber change 

near the vicinity of the center frequency <a0 of the control and signal pulses. Here h(t) is 

the material response of the SOA containing contributions from CH, TPA, SHB and other 
processes. Under semiclassical density matrix description, the analytic expression of h(t) 
is given in reference [10]. 

To achieve a higher order of accuracy, i.e. to consider the effects of the control 
pulse saturation and self-phase modulation on the signal pulse, we have to consider the 
nonlinear term. In addition to the non-degenerated TPA considered in reference [10], the 
degenerated TPA becomes important in the material response h(t) for control pulse 
propagation. In the first order perturbation approximation to which we consider, it is 
sufficient to consider the control pulse propagation to the zero order, completely 
neglecting the nonlinear term in Eq. (2a). The equation is solved under the boundary 
condition that control pulse enters the SOA from the right side of the SOA with a field 
distribution E (L,t) as illustrated in Fig. 2: 
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Photonics in Switching 

When the signal field is expanded into the summation of two fields Es0{z,t)—the signal 

field in absence of control pulse and AEs(z,t)—perturbation of the signal pulse under die 

influence of the control pulse, the solution for field Eso (z, f)is easily obtained as follows: 

Here, Es(0j) is the input signal field at die beginning of the SOA. AEs(z,t) satisfies: 

The general solution is obtained by integration: 

The lower bound za of the integral reflects the three possible regimes of the location 

v v 
ZQ = £_L_. 7o where control and signal pulses meet for a given initial time delay T0. 

v + v 
The output of the detector monitoring the changes in signal pulse due to the 

influence of control pulse is expressed as: 

Here, the symbol * stands for a complex conjugate. The output contains botii amplitude 
and phase changes which are contained in its real and imaginary parts, respectively. The 
real part is detected by the measuring devices sensitive to transmission variations, and the 
imaginary part is sensed by index setups monitoring the signal phase changes. Plugging 

Eqs (4), (5) and (7) into Eq. (8), using the fact that operator Ls and its adjoint operator 

L+
s (0.5<fs -/*f s) commute with each other and changing d/dt into -d/dtby 

integration-by-parts, we write the output as follows: 
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Photonics in Switching 

The output J(T0) is similar in form to that of the co-propagating configuration [10] 

except that the expression here reflects the particular geometry of the counter-
propagating pump-and-probe experiments. All three features in the counter-propagating 
configuration appear in Eq. 9, analytically. The lower bound z0 of the integral on z 
includes the fact that the location where control and signal pulses meet depends of on the 
initial time delay x0. Tz, contained in the response function h of the SOA, reflects that the 
time delay between control and signal pulses is a function of the location z- Finally, the 
fact that control pulse enters the SOA at the opposite side to the signal pulse is indicated 

in the control pulse evolution, e '~z >'Ep{L,t''). 

Similarly to co-propagation pump-and-probe configuration, the effects of the gain 
slope and pulse walk-off can be treated by expanding the linear operators to their first 

r) r) 
order of dIdt, i.e. £. =4j+ i£j ~^~> *"; = Kj +iKj-zr-;j = p,$- After a few changes of 

at at 
variables, integration-by-parts', and using the equality exp(a3/3* )/(?) = f(t + a) [10], 
we cast Eq. (9) into the form: 

where Akz = Kp{L-z)-Ksz. £;.,*r;-,£j, andxv (j = p,s ) are the net gain, the wave 

vector and their derivatives with respect to angular frequency evaluated at co0. For 
specific input control and signal fields, the equation above can be simplified by 
evaluating the gain, the wave vector, and their first derivatives. In the most experimental 
setups, the input control and signal pulses assume following waveforms: 

A j (t) with j = p,s are either Sech functions, for pulses derived from a passively mode 

locked laser, or Gaussian functions for pulses obtained from an actively mode locked 
laser. Here, fi is the chirp parameter of the input control and signal pulses. 

After several changes of variables and integration-by-parts', similar to the co-
propagating configuration [10], Eq. (10) becomes more transparent with the input control 
and signal pulses of the form described by Eqs. (11) and (12): 
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The equation becomes more familiar when the cross-correlation function G^\t) between 
control and signal pulses and an impulse response H(t) are defined: 

Here, the cross-correlation function is even and a few simple transformations are used. 
The cross-correlation function G^2\t) becomes the auto-correlation of the laser pulses for 
control and signal pulses obtained from the same source. It is apparent from Eq. (14), the 
H(t) is the optical impulse response of the SO A in counter-propagating pump-and-probe 
experiments. 

In conclusion, for a first order perturbation approximation, we have obtained an 
analytical optical impulse response of the SOA in counter-propagating pump-and-probe 
experiments. All three different features of the counter-propagating pump-and-probe 
configuration are taken into account analytically and are embedded into the optical 
impulse response Eq. (16). The results are applicable to any zinc blende semiconductor 
active waveguides having a central-symmetry. Higher order accuracy of the optical 
impulse response can be achieved by including control pulse saturation and self-phase 
modulation. 
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