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Abstract 

This paper considers the use of cold-formed steel top-hat sections for purlins as 
an alternative to conventional zed-sections. The use of such top-hat sections may 
be viable for use in cold-formed steel portal framing systems, where both the 
frame spacing and purlin span may be smaller than in conventional hot-rolled 
steel portal frames. Furthermore, such sections are torsionally stiffer than zed-
sections, and so have a greater resistance to lateral-torsional buckling. They also 
do not require the installation of anti-sag rods. The paper describes non-linear 
elasto plastic finite element analyses conducted on top-hat sections. The results 
of twenty-seven tests on four different top-hat sections are presented. Good 
agreement between experimental and finite element results is shown. The finite 
element model is then used for a parametric study to investigate the effect of 
different thicknesses and steel grades. Design recommendations are provided in 
the form of charts that can be used to assist designers when deciding which 
geometry of top-hat section to consider for further development. The use of the 
finite element method in this way exploits modern computational techniques for 
an otherwise difficult structural design problem and reduces the need for an 
expensive and time consuming full laboratory study, whilst maintaining realistic 
and safe coverage of the important structural design issues. 
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millimetres (61 = 61 mm). ''M390'' and T1.0 represents the grade of the material 
( M390= 390 MPa)  and thickness of the top-hat section (T1.0= 1mm). 
 
Table 1: Moment capacity obtained from FEA parametric study under both 
loading directions 
Specimen Thickness  

 
Area 
 

Moment 
of 
inertia  

Yield  
strength  

Moment  
at 
Failure 

Efficiency 
ratio  

 (t) (A) (I) (σy) (Mu
FEA) (Mu

FEA/A) 

 mm cm2 cm4 N/mm2  kNm/cm2 

U-61-M390-T1.0 1.0 2.25 11.21 390 1.29 0.57 
U-61-M390-T1.2 1.2 2.70 13.45 390 1.60 0.59 
U-61- M390-T1.4 1.4 3.15 15.45 390 1.99 0.63 
U-61- M390-T1.6 1.6 3.60 17.94 390 2.38 0.66 
U-61-M450-T1.0 1.0 2.25 11.21 450 1.39 0.62 
U-61-M450-T1.2 1.2 2.70 13.45 450 1.74 0.64 
U-61- M450-T1.4 1.4 3.15 15.45 450 2.19 0.70 
U-61- M450-T1.6 1.6 3.60 17.94 450 2.64 0.73 
U-100-M390-T1.0 1.0 3.06 39.82 390 2.13 0.70 
U-100-M390-T1.2 1.2 3.67 47.79 390 3.06 0.83 
U-100- M390-T1.4 1.4 4.29 55.75 390 3.88 0.91 
U-100- M390-T1.6 1.6 4.90 63.72 390 4.73 0.97 
U-100-M450-T1.0 1.0 3.06 39.82 450 2.25 0.73 
U-100-M450-T1.2 1.2 3.67 47.79 450 3.28 0.89 
U-100- M450-T1.4 1.4 4.29 55.75 450 4.20 0.98 
U-100- M450-T1.6 1.6 4.90 63.72 450 5.16 1.05 
G-61-M390-T1.0 1.0 2.25 11.21 390 1.42 0.63 
G-61-M390-T1.2 1.2 2.70 13.45 390 1.80 0.67 
G-61- M390-T1.4 1.4 3.15 15.45 390 2.20 0.70 
G-61- M390-T1.6 1.6 3.60 17.94 390 2.68 0.74 
G-61-M450-T1.0 1.0 2.25 11.21 450 1.70 0.76 
G-61-M450-T1.2 1.2 2.70 13.45 450 2.11 0.78 
G-61- M450-T1.4 1.4 3.15 15.45 450 2.58 0.82 
G-61- M450-T1.6 1.6 3.60 17.94 450 3.03 0.84 
G-100-M390-T1.0 1.0 3.06 39.82 390 3.31 1.08 
G-100-M390-T1.2 1.2 3.67 47.79 390 4.10 1.12 
G-100- M390-T1.4 1.4 4.29 55.75 390 5.07 1.18 
G-100- M390-T1.6 1.6 4.90 63.72 390 6.03 1.23 
G-100-M450-T1.0 1.0 3.06 39.82 450 3.75 1.22 
G-100-M450-T1.2 1.2 3.67 47.79 450 4.46 1.21 
G-100- M450-T1.4 1.4 4.29 55.75 450 5.40 1.26 
G-100- M450-T1.6 1.6 4.90 63.72 450 6.35 1.30 
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                          ULC1 = 1.4DL + 1.6LL                 (2a)  
   ULC2 = 1.2DL + 1.2LL + 1.2WP  (2b) 
   ULC3 = 1.0DL + 1.4WU    (2c) 
 
The purlins were also checked at the serviceability limit state for the following 
three serviceability load combinations (SLCs). 

                          SLC1 = 1.0LL                     (2d)  
   SLC2 = 1.0WP    (2e) 

                          SLC3 = 1.0WU                               (2f)   
The deflection limits adopted were the maximum of span /150 and 30 mm. 
  
Figure 8(a) shows the variation of maximum permissible purlin spacing against 
frame spacing for the Top-hat 61. The horizontal line at 2 m indicates the 
maximum spanning capability of the cladding (Steadmans, 2011). Therefore, 
even if the maximum purlin spacing can be greater than 2 m, the purlin spacing 
needs to be reduced to 2 m in order to accommodate the design of the cladding. 
It can be seen from Figure 8(a) that the effect of the higher steel grade of 450 
MPa is only beneficial for purlin spans less than 4 m; this indicates that for 
spans greater than 4 m, the design is controlled by serviceability. 

Figure 8(b) shows the variation of maximum permissible purlin spacing against 
frame spacing for the Top-hat 100. The same results for the Z-140 are also 
shown. As mentioned previously, Z-140 is the smallest zed section available in 
the manufactures’ catalogue (Steadmans, 2012). It can be seen that if zed 
sections are used for purlin spans less than 4 m that the purlins will be over 
designed.  

Figure 9(a) shows, for the case of a purlin span of 3 m, the purlin weight per 
square meter (on plan). The maximum permissible spacing is shown above each 
of the bars. As can be seen, the weight of TH61-T1.6 and TH100-T1.0 are 
competitive compared with the zed-sections. However, this does not take into 
account the fact that the cost of the 1.0 mm steel by volume is likely to be 
cheaper than that of the zed-sections. It also does not take into account the fact 
that the top-hat sections are easier to install on site.  
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Figure 9(b) shows the same results for the case of a purlin span of 4 m. As can 
be seen, the TH100-T1.4 is the most competitive top-hat purlin, with a weight 
approximately only 20% higher than that of the zed-sections.  

Figure 9(c) and (d) show the same results for the case of purlin spans of 5 m and 
6 m, respectively. As can be seen, the zed-sections are more competitive.   

Conclusions 

This paper has considered the viability of using top-hat sections for purlins in 
cold-formed steel portal frames. For such frames, the optimal building may have 
a frame spacing less than the 6 m used typically in hot-rolled steel construction. 
Furthermore, in cold-formed steel portal frames, the purlin spacing may need to 
be smaller in order to provide more lateral stability to the primary column and 
rafter members.  

The finite element model was used to undertake a parametric study comprising 
different thicknesses and strengths of the top-hat sections. The results were then 
used to construct bar charts showing the efficiency of the top-hat sections 
compared with the zed-section in terms of weight of steel of purlin required per 
square meter on the roof. While the zed-sections were shown to be more 
efficient for all cases, the comparison showed that top-hat sections performed 
similarly for frame spacings of 3 m and 4 m. For frame spacings of 5 m and 6 m, 
use of top-hat sections would not be efficient.  

However, this comparison in terms of weight ignores some of the advantages of 
the top-hat sections in terms of ease of installation on site, as well as beneficial 
effects such as stressed-skin action. Furthermore, a comparison in terms of cost 
would be more favourable for the top-hat section of thinner gauge. 

The complete study demonstrates how modern numerical analysis techniques of 
the sort that are now readily available to the research community may be used to 
develop design guidance for complex structural components. Such an approach 
greatly reduces the need for expensive and time consuming laboratory study, 
whilst maintaining realistic and safe coverage of all important structural issues. 
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