Picture of rolled up £5 note

Open Access research that shapes economic thinking...

Strathprints makes available scholarly Open Access content by the Fraser of Allander Institute (FAI), a leading independent economic research unit focused on the Scottish economy and based within the Department of Economics. The FAI focuses on research exploring economics and its role within sustainable growth policy, fiscal analysis, energy and climate change, labour market trends, inclusive growth and wellbeing.

The open content by FAI made available by Strathprints also includes an archive of over 40 years of papers and commentaries published in the Fraser of Allander Economic Commentary, formerly known as the Quarterly Economic Commentary. Founded in 1975, "the Commentary" is the leading publication on the Scottish economy and offers authoritative and independent analysis of the key issues of the day.

Explore Open Access research by FAI or the Department of Economics - or read papers from the Commentary archive [1975-2006] and [2007-2018]. Or explore all of Strathclyde's Open Access research...

Devices for terabit optical networks : an overview and trends

Glesk, Ivan and Deng, Kung Li and Prucnal, Paul R. (1999) Devices for terabit optical networks : an overview and trends. Proceedings of SPIE - The International Society for Optical Engineering, 3820. pp. 182-189. ISSN 0277-786X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Clock and data signals are separated from a 100 Gb/s self-clocked orthogonal time division multiplexing (OTDM) system using an ultrafast all-optical intensity-dependent switch. The recovered clock signal is 5 times larger than the input clock signal. This recovered clock signal has sufficient intensity to control a terahertz optical asymmetric demultiplexer (TOAD). The recovered clock can be used without additional amplification as the control signal, and the reflected signal as the data input to a TOAD. The processing is preformed at a relatively low energy of less than 200 fJ for both the clock extraction and demultiplexing. This all-optical scheme may be useful for emerging ultrafast OTDM networks.