Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

The self-reinforcing effect of nylon 6,6 nano-fibres on CFRP laminates subjected to low velocity impact

Palazzetti, Roberto and Zucchelli, Andrea and Trendafilova, Irina (2013) The self-reinforcing effect of nylon 6,6 nano-fibres on CFRP laminates subjected to low velocity impact. Composite Structures, 106. pp. 661-671. ISSN 0263-8223

Full text not available in this repository.Request a copy from the Strathclyde author


This work investigates the mechanical properties of CFR-epoxy laminates interleaved with electrospun Nylon 6,6 nano-fibres. The main goal is to investigate the interaction between the nanofibrous mats interleaved into a laminate and their influence on the property of the whole body and in particular their reinforcing effect. To achieve the purpose, an experimental programme is developed and carried out. Two different nanomodified configurations are suggested and tested together with virgin specimens. All the specimens are subjected to static and dynamic tests to assess their stiffness, harmonic frequencies and damping. The experiments are repeated before and after low velocity impacts in order to investigate the effect of nano-fibres to static and dynamic properties when the laminates are impacted. SEM images of fractured surfaces and the mechanical results were used to attest the benefits brought by the presence of the nanointerleave. Results show that the interaction between the resin and the nano-fibre is the key feature of the reinforcement mechanism. When the resin is undamaged the friction with Nylon increases the damping ratio of nanomodified specimens with respect to that of virgin ones. When the matrix is damaged a fibre-bridging mechanism is revealed, and the nano-fibres increase the damage tolerance of laminates.