Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Sliding-mode control of a DFIG-based wind turbine under non-ideal grid voltages

Martinez, M.I. and Susperregui, Ann and Tapia, Gerardo and Xu, Lie (2013) Sliding-mode control of a DFIG-based wind turbine under non-ideal grid voltages. IET Renewable Power Generation, 7 (4). pp. 370-379. ISSN 1752-1416

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Control algorithms for the rotor- and grid-side power converters of a double-fed induction generator (DFIG)-based wind turbine under non-ideal grid voltage conditions are proposed, and guidelines for tuning the controller parameters are presented. The control schemes are based on sliding-mode control (SMC) theory. Apart from directly controlling the DFIG's average active and reactive powers, the proposed methods also fulfil two additional control targets during voltage unbalance and harmonic distortion, that is, the rotor-side converter (RSC) eliminating electromagnetic torque fluctuations and the gridside converter (GSC) compensating for the stator current harmonics to ensure a sinusoidal total current from the overall generating unit. The described control strategies are proved to be robust against parameter deviations and of fast dynamic response. In spite of the discontinuous nature of the standard SMC, constant converter switching frequency is achieved. Besides, the RSC control algorithm does not require a phase-locked loop and, furthermore, there is no need for decomposing the grid voltage and different currents into symmetrical sequences or harmonic components in any of the converters' control systems. Finally, the excellent performance of the system, as well as its robustness, is verified by means of simulation results under different grid voltage conditions.