
This version is available at https://strathprints.strath.ac.uk/47503/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
Influence of the non-linear rheological properties of blood in middle cerebral aneurysms: numerical and experimental *in vitro* analysis

Laura Campo-Dea˜no*, João Carneiro*, Mónica S.N. Oliveira and Fernando T. Pinho

*FEUP, Faculdade de Engenharia da Universidade do Porto, 4200-465 Porto (Portugal)

James Weir Fluids Laboratory, Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ (United Kingdom)

It is well known that the non-linear rheological properties of blood have a great influence in the development of cardiovascular diseases. Among these pathologies, cerebral aneurysms are one of the most common cerebrovascular accidents and are the cause of one-third of deaths worldwide. This kind of accident starts with a dilatation of an artery usually occurring near arterial bifurcations in the Circle of Willis. Despite increasing progress, the initiation, growth and rupture of aneurysms are still not well understood, and further hemodynamic studies are crucial for the diagnostic and treatment of these diseases. However, due to the difficulties associated with working with real blood (due to the economical, safety and ethical issues involved), synthetic models of blood are often used.

In this work we perform numerical simulations to investigate the hemodynamics in simplified geometries representative of middle cerebral aneurysms using Computational Fluid Dynamics (CFD), which is a technique that has been progressively used for modelling the flow in diseased arteries and it is a tool of great potential for the diagnostic, prediction and treatment of cerebral aneurysms. We consider a Newtonian approximation and the Giesekus and sPTT models based on fitting the rheology of human blood. Three geometries are considered consisting of different bifurcations with an aneurysm located at the end of the parent vessel, between two daughter vessels, in which the neck of the aneurysm and the shape of the daughter branches are varied (Fig. 1).

The authors acknowledge the financial support from FCT, COMPETE, QREN and European Union (FEDER) through projects PTDC/EME-MFE/99109/2008, EXPL/EMS-TRA/2306/2013 and FCT Investigator grant IF/00148/2013.

---

* campo@fe.up.pt


