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Abstract

Many artificial and natural fluids contain macromolecules, particles or droplets

that impart complex flow behaviour to the fluid. This complex behaviour re-

sults in a non-linear relationship between stress and deformation standing in

between Newton’s law of viscosity for an ideal viscous liquid and Hooke’s law

for an ideal elastic material. Such non-linear viscoelastic behaviour breaks

down flow reversibility under creeping flow conditions, as encountered at

the micro-scale, and can lead to flow instabilities. These instabilities offer

an alternative to the development of systems requiring unstable flows under

conditions where chaotic advection is unfeasible. Flows of viscoelastic fluids

are characterized by the Weissenberg (Wi) and Reynolds (Re) numbers, and

at the micro-scale flow instabilities occur in regions in the Wi-Re space typ-

ically unreachable at the macro-scale, namely high Wi and low Re. In this

paper, we review recent experimental work by the authors on the topic of

elastic instabilities in flows having a strong extensional component, includ-
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ing: flow through a hyperbolic contraction followed by a sudden expansion;

flow in a microfluidic diode and in a flow focusing device; flow around a

confined cylinder; flow through porous media and simplified porous media

analogues. These flows exhibit different types of flow transitions depending

on geometry, Wi and Re, including: transition from a steady symmetric to

a steady asymmetric flow, often followed by a second transition to unsteady

flow at high Wi; direct transition between steady symmetric and unsteady

flows.
Keywords: Viscoelasticity, Elastic instabilities, Microfluidics

1. Introduction1

The use of microfluidic devices is growing fast in a variety of applications2

in biochemistry, drug delivery, medical diagnosis, micro-heat exchangers, se-3

quencing and synthesis of chemicals, micro-mixing or micro-rheology, among4

others [1]. Most of the research in this field concerns Newtonian fluids [2]5

with their flows characterized by linear behaviour typical of low Reynolds6

number flows, although chaotic advection can also occur in laminar flows7

at sufficiently high Reynolds numbers [3]. However, a significant number of8

fluids (natural and mostly synthetic) includes macromolecules, particles or9

droplets that impart complex properties to the fluids, such as viscoelasticity,10

thus breaking the flow reversibility typical of inertialess flow of Newtonian11

fluids [4].12

The Reynolds number (Re) is defined as the ratio between inertial and vis-13

cous forces, Re = ρUL/η, and often requires the definition of a characteristic14

rate of deformation γ̇ ≈ U/L from relevant velocity (U) and length scales (L)15

2
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in order to determine the characteristic shear viscosity η for non-Newtonian16

fluids. The ratio between the relaxation time of the fluid (λ) and a charac-17

teristic time scale of the flow (tflow = L/U) is the so-called Deborah number18

(De) given by De = λU/L, which is a dimensionless measure of the rate of19

change of flow conditions related to flow unsteadiness in a Lagrangian per-20

spective [5]. In shear flows, viscoelastic fluids are also subject to shear-driven21

normal stresses and the ratio between the normal and shear stresses quanti-22

fies the non-linear response of the viscoelastic fluid and is proportional to the23

Weissenberg number (Wi = λγ̇), so that the final form of the Weissenberg24

number in many flows looks like that of the Deborah number, but it has a25

clearly different physical meaning (and in some cases may also involve a dif-26

ferent length scale when normal stresses and Lagrangian transients co-exist)27

[5, 6].28

The small length scales in microfluidics increases significantly the relevance29

of fluid elasticity and allows exploring regions of the Wi-Re parameter space30

typically unreachable at the macro-scale, i.e. low Re and high Wi, repre-31

sented by large values of the Elasticity number (El = Wi/Re = λη/ρL2) [7].32

Therefore, at the micro-scale, flows of viscoelastic fluids can be significantly33

different from those of their Newtonian counterparts, because elastic insta-34

bilities can be triggered with relative ease. One illustrative example of this35

phenomenon can be found in the human circulatory system, as there is re-36

cent evidence of viscoelastic behaviour of human blood and plasma, which is37

enhanced in the microcirculation [8, 9, 10]. Purely elastic flow instabilities in38

shear flow have been extensively studied both at macro [11] and micro-scales39

[12] and it is widely accepted that the underlying mechanism is related to the40

3
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elastic normal stresses developing along curved streamlines being unable to41

sustain minor perturbations appearing on those streamlines [13, 14, 15, 16].42

Pakdel and McKinley [14, 15, 17] showed that the critical conditions for the43

onset of purely elastic instabilities can be described for a wide range of flows44

by a single dimensionless parameter (M), which accounts for elastic normal45

stresses and streamline curvature:46

M =
√

λv

�
τ11

τ12
, (1)

where λ is the relaxation time of the fluid, v is the local streamwise fluid47

velocity, τ11 is the local tensile stress in the flow direction, τ12 is the shear48

stress (τ12 = ηγ̇) and � is the streamline local radius of curvature. When49

the flow conditions are such that M locally exceeds a critical value, Mcrit,50

elastic instabilities develop. The value of Mcrit is slightly dependent on the51

flow, and for simple flows, where the radius of curvature is known, Mcrit52

can be estimated. As discussed by McKinley et al. [15], for Taylor-Couette53

flow Mcrit ≈ 5.9 and for torsional flow in a cone-and-plate arrangement,54

Mcrit ≈ 4.6. For more complex flows (see example in Figure 1), the spatial55

variation of M needs to be taken into account to identify the critical regions56

where the largest value of M occurs. This mechanism for the onset of purely57

elastic instabilities and the applicability of the M parameter to identify the58

critical conditions for the onset of elastic instabilities was confirmed numer-59

ically by Alves and Poole [18] for creeping flow of upper-convected Maxwell60

(UCM) fluids in smooth contractions, for a wide range of contraction ratios.61

62

The experimental and numerical studies of purely elastic flow instabilities63

4



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

developing in several micro-geometries for extensional-dominated flows have64

essentially emerged in the last decade (e.g. [12, 19, 20]). Among these ar-65

rangements, viscoelastic flow in contraction geometries has been the subject66

of numerous investigations. Although the instability onset can be linked to67

the ubiquitous presence of large normal stresses, and streamline curvature68

is also present, in other micro-geometries able to generate extensional domi-69

nated flows (e.g. stagnation/ flow focusing devices) or mixed kinematic flows70

(e.g. contraction/expansions), a clear picture of all the observed transitions71

and their causes has not yet emerged [21]. These are conditions that justify72

our research program exploring various flows possessing a strong extensional73

deformation flow field in order to identify common features. These flows ex-74

hibit a rich variety of unexpected effects, usually anchored on elastic effects.75

The high sensitivity of viscoelastic fluid flow at the micro-scale to flow insta-76

bilities under creeping flow conditions offer an alternative to the development77

of systems requiring unstable flows under conditions where chaotic advection78

is impossible or difficult to achieve, while they also impose limits of operation79

for systems where instabilities are to be avoided at all, as in micro-rheology.80

The next section briefly describes the experimental techniques prior to the81

presentation and discussion of experimental results obtained in five different82

geometrical arrangements, where the common thread is the presence of a83

strong extensional flow component and the onset of elastic instabilities at84

sufficiently high Wi.85

5
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2. Materials and methods86

The viscoelastic fluids typically used in our works consist of aqueous poly-87

mer solutions with a high molecular weight, namely polyacrylamide (PAA,88

Mw=18×106 g mol−1, Polysciences) or polyethylene oxide (PEO, Mw= 8×10689

g mol−1, Sigma-Aldrich), at different weight concentrations (see Table 1 for90

details).91

All these fluids were characterized rheologically under simple shear flow92

by means of a rotational rheometer (Physica MCR301, Anton Paar) to deter-93

mine the dependence of the shear viscosity on the shear rate (Figure 2a). In94

this experiment the first normal stress difference (N1) can also be determined95

from the measured normal force. However, measuring N1 in dilute and semi-96

dilute polymer solutions is rather difficult and obtaining reproducibility in97

the results is challenging. In these cases, it is more effective to perform the98

characterization under uniaxial elongational flow as in a capillary-breakup99

extensional rheometer (Haake CaBER1, Thermo Scientific), which measures100

the time evolution of the diameter of a stretched fluid filament as it thins,101

from which the longest relaxation time of the fluids can be determined (Figure102

2b) [22]. Despite the significant differences between a steady shear flow (as103

in a shear rheometer) and an unsteady extensional flow (as in the CaBER104

device), there is a direct relationship between the elastic properties mea-105

sured in both devices. Indeed, Zell et al. [23] have found that the normal106

stress coefficient, measured in shear flow and defined as Ψ10 = N1
γ̇2 , shows107

a quadratic dependence on the relaxation time determined in the CaBER.108

Since the normal stress difference coefficient depends on a shear relaxation109

time, the relation between the shear and extensional relaxation times may110

6
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seem obvious but there are different dependences that remain unexplained111

as discussed by Zell et al. [23].112

113

The viscoelastic fluids used in the experiments usually exhibit a shear114

thinning behaviour, i.e. their apparent shear viscosity decreases with the in-115

crease in the applied shear rate. Moreover, the higher the molecular weight116

and the concentration of the polymer additive, the higher the shear viscosity,117

the stronger the shear thinning behaviour and the longer the relaxation time118

will be [24, 25]. These effects are clearly shown in Figure 2, where the viscos-119

ity of the various fluids is plotted as a function of the shear rate in Figure 2a120

and the time evolution of the normalized diameters measured in the CaBER121

device are shown in Figure 2b. A small percentage of glycerol was added to122

one of the fluids, in order to increase slightly the viscosity of the solution123

increasing in turn the relaxation time of the polymer solution. Typically,124

Boger fluids are prepared by dissolving a flexible polymer with large molec-125

ular weight in a high viscosity solvent, to minimize the shear thinning due126

to the addition of the polymer. However, the use of high-viscosity fluids in127

microfluidics is precluded by the large pressure drops their flows develop with128

severe consequences to the structural integrity of the chips. The advent of129

Boger fluids with low viscosity is a useful alternative for microfluidics when130

it is important to distinguish between shear thinning and elastic effects. By131

adding salt to aqueous solutions of polyacrylamide, Aitkadi et al. [26] found132

that the salt has a stabilizing effect on the shear viscosity while maintaining133

adequate levels of elasticity, thus resulting in a Boger fluid behaviour, a good134

example being the PAAsg200 fluid shown in Figure 2.135

7
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No storage or loss moduli (G′ and G′′) are presented because it was not pos-136

sible to measure G′ accurately in small amplitude oscillatory shear (SAOS)137

in this rotational rheometer due to instrument limitations and the low elas-138

ticity of the fluids used. All the rheological experiments, as well as all the139

microfluidic experiments, were performed at a constant temperature of 20 °C.140

141

The geometries used were planar micro-channels made of polydimethylsilox-142

ane (PDMS) fabricated from SU-8 photoresist moulds using standard soft-143

lithography techniques, as described in [27, 28]. The micro-fabrication pro-144

cess consists of four fundamental steps: 1) drawing of the micro-geometries145

using a CAD software; 2) manufacture of the mask using the CAD drawings146

- this type of mask is obtained by sputtering a chrome layer onto a glass or147

quartz substrate in which the CAD image is etched; 3) manufacture of the148

SU-8 mould by photolithography using the mask; and 4) fabrication of the149

PDMS micro-channels using the mould. High-resolution chrome masks were150

employed to obtain high quality SU-8 moulds with nearly vertical side-walls151

and well-defined corner features. The SU-8 photoresist was used to create152

a positive-relief on the mould surface, producing a mould containing the in-153

verse structure of the micro-channels. The microfluidic devices were then154

fabricated by casting PDMS on the mould. The PDMS used (Sylgard 184,155

Dow Corning) is commercially available as a prepolymer kit composed of a156

PDMS oligomer and a crosslinking agent or curing agent, which are mixed157

in certain proportions (typically 50:1, 20:1 and 10:1 PDMS:curing agent) to158

produce the polymer used to fabricate the micro-devices. An overview of the159

micro-channel fabrication procedure is shown schematically in Figure 3. In160

8
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the next section the different geometrical arrangements and their influence161

on the fluid flow will be described in detail. Figure 4 shows scanning electron162

microscopy (SEM) pictures of the micro-channels used and Table 2 lists the163

corresponding dimensions.164

Pressure measurements were performed using differential pressure transduc-165

ers (Honeywell 26 PC sensors) operating up to a maximum differential pres-166

sure of 210 kPa. Pressure transducers with different ranges and sensitivities167

were used depending on the fluids and flow rates tested. The flow rate was168

always imposed using a syringe pump, such as the neMESYS (Cetoni GmbH)169

and PHD 2000 (Harvard Apparatus), equipped with different Hamilton sy-170

ringes (from 25μl to 1ml, depending on the required flow rate) to ensure171

pulsation-free dosing.172

Flow visualizations were based on streak photography with the micro-channels173

placed on the motorized stage of an inverted epi-fluorescence microscope174

(DMI 5000M, Leica Microsystems GmbH) equipped with a sensitive monochro-175

matic CCD camera (DFC350 FX, Leica Microsystems GmbH). The fluids176

were seeded with fluorescent tracer particles (1 μm diameter Nile Red par-177

ticles, Molecular Probes, Invitrogen, Ex/Em: 520/580 nm) and the illu-178

mination was provided by a 100 W mercury lamp operating together with179

adequate excitation and emission filters and a dichroic mirror.180

For the velocity measurements, a micro-Particle Image Velocimetry (μPIV)181

system from Dantec Dynamics was used. Images of the emitted radiation182

from excited fluorescent tracer particles were captured using a 20× (numer-183

ical aperture, NA=0.4) microscope objective and a camera (Flow Sense 4M,184

Dantec Dynamics), with a resolution of 2048 × 2048 pixels and running on185

9
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double frame mode. The flow was illuminated by a double-pulsed 532 nm186

Nd:YAG laser (Dual Power 65-15, Dantec Dynamics). The fluorescent par-187

ticles used in μPIV were smaller than those used in streak photography and188

had a diameter of 0.5 μm.189

3. Results and Discussion190

In this section, we review five different experimental investigations in extensional-191

dominated flows of viscoelastic fluids which explore the onset of elastic insta-192

bilities. The case studies focus on fundamental issues to understand the flow193

dynamics itself, but also cover more applied research ranging from fluid char-194

acterization in a microfluidic rheometer to the development of a microfluidic195

diode, which can be used as a flow rectifier or in micro-pumps.196

3.1. Microfluidic hyperbolic contraction and sudden expansion197

The flow of Boger fluids in hyperbolic contraction micro-channels was in-198

vestigated to assess the relation between the observed flow patterns and the199

dimensionless relaxation time of the fluids. The underlying rationale for us-200

ing hyperbolic-shaped channels is their ability to generate strong extensional201

flows with enhanced strain-rate homogeneity near the centreline when com-202

pared to other contraction flows [29, 30]. This geometry is thus sensitive203

to effects of elongational viscosity and the use of Boger fluids allows a clear204

separation between elastic and viscous effects [31].205

In their investigation on the flow through hyperbolic contraction and sudden206

expansion, Campo-Deaño et al. [32] used aqueous solutions of PAA at differ-207

ent weight concentrations (50, 125, 250 and 400 ppm) to which 1% of NaCl208

were added (Table 1). The shear viscosity of the fluids ranges from 1 to 4209

10
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mPa·s (Figure 2).210

The geometry imaged in Figure 4a) includes a hyperbolic contraction fol-211

lowed by a sudden expansion. The width of the inlet and outlet channels is212

D1=400 μm, the minimum width of the contraction is D2=54 μm and the213

length of the hyperbolic contraction region is Lc=128 μm, resulting in a to-214

tal Hencky strain of εH= ln(D1/D2)=2. The depth of the micro-channel is215

constant, h = 45 μm.216

Visualizations of the flow patterns in the hyperbolic contraction/abrupt ex-217

pansion micro-channel (Figure 5) showed a Newtonian-like behaviour at very218

low flow rates (low Wi) and complex non-Newtonian behaviour at high flow219

rates (high Wi) for all polymer concentrations. This non-Newtonian be-220

haviour corresponds to the existence of regions of separated flow upstream of221

the contraction. Thus, for negligible inertia and elasticity no flow separation222

was observed. For the Boger fluid with 400 ppm of PAA and 1% NaCl the223

critical flow rate at which the behaviour first changes from Newtonian-like to224

non-Newtonian was determined as Qcr = 0.17 ml/hr, which corresponds to225

Re = 0.7 and Wi = 4; for the PAA solution at 250 ppm the critical value is226

Qcr = 0.27 ml/hr (Re = 1.2, Wi = 4); for 125 ppm Qcr = 0.47 ml/hr (Re =227

2.8, Wi = 3.6), and finally for the lowest concentration of 50 ppm the critical228

flow rate corresponds to Qcr = 0.95 ml/hr (Re = 5.8, Wi = 2.8). Figure 5229

shows flow patterns above this critical flow rate for each case. As expected,230

there is a clear decrease in the critical flow rate when the polymer concentra-231

tion is increased due to enhanced elasticity with the corresponding increase232

of the relaxation time. However, the transition was found to correspond to233

a critical value of Wi of about 4, which did not decrease significantly except234

11
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when flow inertia became relevant (Re>2). Above the critical flow rate, sym-235

metric vortices develop upstream of the hyperbolic contraction in contrast236

to the behaviour of Newtonian liquids that exhibit vortices downstream as a237

consequence of inertial effects. Further increasing the Weissenberg number238

leads to an increase of the upstream vortex due to the enhancement of elas-239

tic effects which is characterized in terms of the dimensionless vortex length,240

XR=Lv/D1, where Lv is the vortex length. This variation of XR with Wi is241

shown in Figure 6 and it can be used as a simple methodology to estimate242

the value of the relaxation time for solutions of very low polymer concentra-243

tion by doing an extrapolation from the relaxation time obtained using the244

extensional rheometer (CaBER) for the highest concentrations (400 and 250245

ppm) to the lowest concentration (50 ppm) based on the assumption that246

Wicr is essentially independent of the polymer concentration. This assump-247

tion is expected to hold as long as inertial effects are not important. In this248

case, as the critical Weissenberg number is Wicr ≈4, the relaxation time for249

the 50 ppm solution can be estimated using Equation 2:250

Wicr = λε̇ ≈ λ (U2 − U1)
Lc

= λ
Qcr

hLc

( 1
D2

− 1
D1

)
(2)

obtaining λ ≈5 ms, which is similar to the value measured in the CaBER251

(λ= 4± 1 ms).252

As already discussed, at high Wi an increase of the vortex size due to the253

progressive enhancement of elastic effects is observed. Moreover, in the ex-254

periments reported by McKinley et al. [33], and Sousa et al. [34] using a255

different aqueous polymer solution (PEO), the vortex growth upstream of256

the contraction presents either asymmetric and/or time-dependent behaviour257

12
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which increases in magnitude with Wi, while in the present case the flows258

are still steady and symmetric at the flow rates studied, as they are below259

the critical point.260

This vortex growth regime in viscoelastic fluid flows in contractions has been261

also widely reported at the macro-scale. For instance, Alves et al. [35] used a262

more viscous Boger fluid to characterize the flow patterns in a square-square263

contraction, observing the formation of vortices upstream the contraction264

plane at low De (or low Wi) which increased with De until the flow be-265

came chaotic-like at high flow rates. Note that these flows were also char-266

acterized by small Reynolds numbers, Re<1. Rothstein and McKinley [36]267

studied experimentally the flow of a Boger fluid in an axisymmetric contrac-268

tion/expansion and they also reported an increase in the normalized pressure269

drop at high De which is believed to be the result of an additional resistance270

due to the extensional flow in the contraction (strain-hardening of the ex-271

tensional viscosity). Later on, Sousa et al. [37] studied the flow of a Boger272

fluid through square-square contractions with different contraction ratios,273

and identified a number of distinct flow type regions with increasing values274

of De: at low De a region in which lip and corner vortices coexist followed at275

higher De by two distinct regions of diverging flow which are associated with276

vortex growth but exhibit different characteristics for low and high contrac-277

tion ratios; and at large De the onset of unstable flow in which the vortex278

size varies periodically in time.279

3.2. Microfluidic diode280

A microfluidic diode, or rectifier, is a micro-channel with anisotropic flow281

resistance in both flow directions. The anisotropic behaviour can be due to282
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inertial or elastic up-aft symmetry breaking effects when Newtonian or vis-283

coelastic fluids flow in these micro-devices, respectively. Microfluidic diodes284

can be employed for instance in fixed geometry micro-pumps, which are285

commonly used in micro total analysis systems (μTAS) for pumping fluids286

[38, 39]. The first fluidic rectifier was patented by Tesla [40] for Newtonian287

fluids based on inertial non-linear effects at high Re flows.288

For viscoelastic fluids, Groisman and Quake [41] proposed a microfluidic de-289

vice consisting of 43 triangular cavities connected in series, which exhibited290

a maximum diodicity (Di) of about 2 (Di is defined as the ratio between291

the backward, higher, and forward, lower, flow rates through the device for292

a given pressure drop). Later, a significant increase in the diodicity was293

achieved by Sousa et al. [42, 43], using microfluidic diodes made from 42294

similar hyperbolic shaped cavities connected in series, using different aspect295

ratios. The aspect ratio (AR) is defined as the ratio between the depth of the296

channel and its smallest width (wc) at the neck of the contraction (cf. Figure297

7a for the geometry of a single element) and microfluidic diodes with AR =298

0.73, 1.26 and 1.71 were used in the experiments. The viscoelastic fluid used299

was an aqueous solution of PEO at a concentration of 0.1 wt% (Table 1). The300

polymer solution (PEO1000 in Figure 2) has a shear-thinning behaviour with301

a zero-shear rate viscosity of η0= 7.5 mPa·s, an infinite shear rate viscosity302

of η∞= 3 mPa·s and a relaxation time determined in the CaBER device, λ303

= 73.9 ms (Figure 2b). The Reynolds number is defined as Re = ρUcwc/η0,304

where Uc is the average velocity at the narrow passage with width wc, and305

the Weissenberg number is defined as Wi = λUc/(wc/2).306

The flows are characterized by low Re and under these conditions the flow of307
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the Newtonian fluid is found to be similar in both flow directions as in the308

limit of Re → 0 due to creeping flow reversibility, hence the diodicity is one.309

Recirculations appear in both flow directions and grow within the hyperbolic310

elements as Re is increased, but the flow remains symmetric relative to the311

centreline, as shown in Figure 7a, with no significant rectification effects.312

For the viscoelastic fluid flow we observed an entirely different dynamic flow313

behaviour, with elasticity-induced recirculations appearing inside the hyper-314

bolic corners, except at low flow rates (low Wi) where the flow is Newtonian-315

like. As the elasticity is increased, elastic instabilities appear first in the316

forward direction as shown in Figure 7b and only at higher Wi do they ap-317

pear in reversed flow. With the onset of the elastic instabilities, the vortices318

appear and disappear along time in some elements of the diode (unsteady319

flow). The critical Weissenberg number (Wicr) for the onset of these elastic320

instabilities in forward flow increases with the depth of the channel (h): for321

AR= 0.73, Wicr≈ 20; for AR = 1.26, Wicr≈ 25; and for AR = 1.71, Wicr≈322

45.323

Profiles of the normalized streamwise velocity measured with μ-PIV along324

the centreline of several consecutive elements show a large difference in the325

amplitude of the velocity oscillations in both flow directions, as can be seen in326

Figure 8. This dissimilar behaviour in the two directions is in contrast to the327

results for Newtonian fluids where the amplitudes of the oscillations of the328

velocity profiles in backward and forward flow were the same, as documented329

by Sousa et al. [42] and not shown here for conciseness. In the backward di-330

rection, for which the viscoelastic flow remains steady up to higher flow rates,331

the velocity gradient at the centreline is higher than for the forward direction332

15



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

(unsteady flow). Note that in the latter case the velocity field was averaged333

over a long period of time, in which the flow behaviour was varying in time334

due to the elastic instability and consequently, the velocity oscillations were335

smoothed. In those unsteady flow experiments, time-averaged measurements336

were made over a time scale significantly larger than the fluid relaxation time337

to establish the overall time-averaged flow field.338

For viscoelastic fluid flow, the pressure drop measured along the micro-339

channel also depends on the flow direction, leading to enhanced diodicity.340

As shown in Figure 9a, the pressure drop is higher in the forward direction,341

where the flow is more sensitive to elastic instabilities leading to unsteady342

flow at lower Wi than in the backward flow direction, so that the diodicity343

increases significantly above this first flow transition. At higher flow rates344

(or Wi), when the flow also becomes unsteady in the backward direction,345

the corresponding pressure drop ceases to differ so significantly from that in346

the forward direction leading to a reduction of diodicity at high Wi. The347

stronger and more homogeneous extensional flow in the forward direction is348

responsible for the earlier onset of elastic instabilities and of enhanced diod-349

icity (Di), especially for higher aspect ratios as shown in Figure 9b. Using350

the hyperbolic-shaped micro-devices a maximum diodicity of about 6.4 was351

achieved when the effect of the bounding walls decreased, thus minimizing352

shear effects and enhancing the extensional flow component [42].353

3.3. Flow-focusing device354

The geometry of a flow-focusing device is similar to a cross-slot device, but355

the flow comprises three inlets and one outlet channel (all of width D, cf.356

Figure 4c), thus imposing an extensional flow to the central stream of the357
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device, as shown in the Newtonian fluid flow patterns of Figure 10. This358

geometry has been used at the micro-scale for a number of applications, such359

as rheometry [44], fluid mixing [45], or droplet formation [46].360

We investigated experimentally the flow of a Newtonian fluid, de-ionized wa-361

ter [47, 48], and of a viscoelastic fluid [47], which was an aqueous solution of362

125ppm (w/w) of PAA with 1% of NaCl (Table 1) resulting in a Boger-like363

fluid with a nearly constant viscosity of η = 1.31 mPa·s and a relaxation time364

of λ= 12.4 ms, measured in the CaBER device (Figure 2). For the Newtonian365

fluid flow, Figure 10 compares the experimental flow patterns with numerical366

predictions obtained at the same flow conditions showing a very close match.367

The Newtonian fluid flow remained symmetric relative to the horizontal cen-368

treline (cf. Figure 10) for a wide range of flow conditions (Re �113). The369

Reynolds number, based on the exit channel, is defined as Re = ρU3D3/η,370

where U3 and D3 are the corresponding average velocity and channel width.371

Furthermore, the flow rate ratio (FR = Q2/Q1) or the corresponding velocity372

ratio (V R = V2/V1), defined as the ratio of the inlet average velocities in the373

lateral streams to the average velocity in the central inlet stream, controls374

the total Hencky strain experienced by the fluid in the converging region [47]375

(shown by separation streamlines in Figure 10).376

For the viscoelastic fluid, a symmetric flow was also observed but only at377

sufficiently low Wi as shown in Figure 11a. As Wi is increased (defined as378

Wi = λU3/D3), two types of instabilities were observed [48]: a first transition379

in which the steady symmetric flow becomes asymmetric but remains steady380

(Figure 11b) and a second instability at higher Wi in which the steady asym-381

metric flow becomes unsteady (Figure 11c).382

17



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

The first transition is driven by elastic normal stresses that act along the383

streamlines and is entirely absent from the corresponding Newtonian fluid384

flow. Compared to the cross-slot flow discussed by Poole et al. [49], the main385

differences lie in the fact that there is no stagnation point at the centre of the386

geometry and that the onset of elastic driven instabilities depends not only387

on Wi, but also on the velocity ratio as shown in Figure 12. For example,388

we observed that for very low VR the flow evolves directly from steady sym-389

metric to unsteady flow without ever going through the intermediate regime390

of steady asymmetric flow. This behaviour was also captured in the numeric391

computations [19] and was attributed to the normal stresses not being suf-392

ficiently high to trigger that intermediate transition. The transition from393

steady symmetric to steady asymmetric flows acts therefore as a stress relief394

mechanism.395

396

3.4. Confined cylinder397

The flow past a cylinder is a classic problem in fluid dynamics. The shallow398

depths typical of microfluidics bring a renewed interest into this topic, in399

particular on the effects of the aspect ratio. The flow of a Newtonian and400

a viscoelastic Boger fluid past a confined cylinder of diameter D placed in401

the centre of a micro-channel (width H = 212 μm, cf. Figure 4d) was in-402

vestigated to assess the effects of the blockage ratio (BR, ratio between the403

cylinder diameter and the width of the microfluidic device) and aspect ra-404

tio (AR, ratio between the depth of the microfluidic device and the cylinder405

diameter). To characterize the Boger fluid flow we use the Weissenberg num-406

ber, Wi = λU/(D/2) and when necessary the Reynolds number is defined407
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as Re = ρUD/2η. The micro-geometries were designed with different widths408

and depths to obtain AR = 2.0, 1.0 and 0.55 and BR = 25%, 50% and 75%.409

De-ionized water was used as Newtonian fluid and the Boger fluid was an410

85 wt% aqueous solution of glycerol and PAA at a weight concentration of411

200 ppm with 1% NaCl (Table 1). The Boger fluid showed a nearly constant412

shear viscosity of 0.152 Pa·s over a wide range of shear rates. The character-413

istic relaxation time of the Boger fluid measured in the CaBER device was414

λ = 86.7 ms at 293.2 K (Figure 2b).415

For the Newtonian fluid flow at creeping flow conditions, there is no flow416

separation and the flow patterns are symmetric both upstream and down-417

stream of the cylinder, due to creeping flow reversibility of Newtonian flows.418

At non-negligible Reynolds numbers, the measurements confirm the onset of419

flow separation downstream of the cylinder above a critical value of Re, in420

agreement with Ribeiro et al. [50]. This critical Re depends on AR and BR421

and increases with BR with a more pronounced effect at higher BR.422

Over the wide range of Wi investigated the following flow regimes were iden-423

tified: Newtonian-like flow; flow with steady divergent streamlines; periodic424

flow; chaotic-like flow. This sequence of flow transitions takes place as Wi425

is increased and the critical conditions for the transitions were found to be426

dependent on AR and BR. For low Wi, regardless of AR and BR, the flow is427

always symmetric upstream and downstream of the cylinder. Increasing Wi,428

diverging streamlines progressively appear upstream of the cylinder. Both429

the critical conditions for the onset of the diverging streamlines and the in-430

tensity of this effect depend on the values of AR and BR: Figure 13 illustrates431

that for BR=50% and Wi≈ 30 the intensity of the diverging streamlines in-432
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creases as AR decreases. Moreover, we also found that for the same Wi, the433

intensity of the divergent streamlines increases as BR increases. Therefore, in434

both cases the divergent streamlines become stronger with wall confinement.435

As Wi increases further, the divergent streamlines become progressively more436

pronounced until an elastic instability arises upstream of the cylinder, near437

the forward stagnation point, leading to time-dependent flow. For the range438

of flow conditions tested, elastic instabilities were observed only for BR=439

75%. Figure 14 shows the profiles of the streamwise dimensionless velocity440

along the centreline for the Boger fluid flow in order to illustrate the effects441

of: elasticity at constant AR and BR (Figure 14a) and of the aspect ratio442

for constant Wi and BR (Figure 14b).443

The streamwise velocity far upstream of the cylinder is similar to that of444

the Newtonian fluid flow, since the shear viscosity is constant and the shape445

of the fully-developed velocity profile is exclusively determined by the shear446

stress. Upstream of the cylinder the Boger fluid flow is independent of the447

elasticity of the fluid (cf. Figure 14a), but it naturally depends on the aspect448

ratio of the inlet channel (cf. Figure 14b) with the maximum velocity of the449

fully-developed profile occurring for AR = 2 (square channel). Downstream450

of the cylinder, the length required for flow redevelopment increases progres-451

sively with Wi (cf. Figure 14a),regardless of AR and BR. Figure 14b shows452

that as geometric confinement increases the spatial influence of the cylinder453

grows: the flow deceleration upstream of the cylinder starts slightly earlier454

and the downstream flow redevelopment length increases.455
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3.5. Microfluidic analogues of a porous medium456

Over the last decades, the flow of non-Newtonian fluids through porous me-457

dia has gained significant importance in applications related to the petroleum458

industry, as in enhanced oil recovery, among others. The combination of the459

non-linear properties of those fluids with the meandering paths within the460

media, thus combining shear and extensional flow features, results in a com-461

plex fluid mechanics problem. Moreover, the porous media are typically462

opaque thus preventing the use of optical techniques. In order to obtain a463

better insight about the dynamics of viscoelastic fluid flows through porous464

media we designed simple micro-channel analogues consisting of a sequence465

of contractions/expansions arranged in symmetric and asymmetric configu-466

rations as shown in Figure 4e [51]. Dilute aqueous solutions of PAA at 50467

and 125ppm (Table 1 and Figure 2) were used as model viscoelastic fluids in468

the porous media analogues, as well as in the real porous media consisting469

of unconsolidated packed beds (beach sand).470

Measurements with de-ionized water flowing through symmetric and asym-471

metric micro-channels showed a linear variation of the streamwise pressure472

gradient with the flow rate under laminar flow conditions. Using Darcy’s law473

it was possible to relate the modified permeabilities of the micro-channels474

with the permeability of the porous medium while obtaining the porosity of475

the porous medium and the Sauter’s mean diameter (x32) of the particles as476

described in [51]. It was found that the bed of beach sand with an average477

particle size of x32 ≈ 400 μm and a porosity ε = 0.36 is characterized by478

a modified permeability of k′
P M=2.8×10−10 m2, which is similar to the per-479

meability of the analogue micro-channel. The results plotted in Figure 15a480
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show that both micro-channel configurations mimic well the pressure drop-481

flow rate variation for Newtonian fluids when the equivalent particle size is482

selected properly, corroborating in this way and in terms of these flow prop-483

erties at least, that both simplified microfluidic systems are reasonably good484

analogues of a real porous medium when a Newtonian fluid is used.485

For viscoelastic fluids the situation is somehow different (Figure 15b). Here,486

the Weissenberg number is defined as Wi = λ Ui

dpMC
, where λ is the relaxation487

time of the fluid, Ui is the velocity in the contraction sections and dpMC is488

the equivalent particle size of the analogous porous medium. At low Wi, the489

pressure drop measured experimentally across the bed varies linearly with490

flow rate, but above a critical Weissenberg number (Wicr), a larger slope in491

the pressure gradient curve is observed due to the onset of elastic instabili-492

ties in both the asymmetric micro-channel and real porous medium (critical493

conditions depend on the geometry, see Figure 16). According to the Pakdel-494

McKinley criterion [14, 15, 17], since the flow in the asymmetric configuration495

is characterized by more marked streamline curvatures, the onset of elastic496

instabilities is expected to occur at lower Wi as found in the experiments.497

The symmetric configuration was found to reproduce well the flow of vis-498

coelastic fluids at low Wi, whereas the asymmetric configuration provides499

better results at high Wi (Figure 15b). In this way, both micro-geometries500

seem to be complementary and could be interesting tools to obtain a better501

insight about the flow of viscoelastic fluids through a porous medium.502

Finally, on the pursuit of analysing the elastic instabilities without the influ-503

ence of shear thinning effects, we have also studied the flow of low-viscosity504

Boger fluids (aqueous solutions of 50 and 125 ppm of PAA with 1% of NaCl,505
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see Table 1 and Figure 2 cf. [32]), through the same porous medium. Above506

a critical flow rate, there is a large increase in the slope of the pressure gra-507

dient curve (cf. Figure 17) due to the onset of elastic effects as discussed508

previously. Then further increasing the flow rate, a more dramatic rise in509

the slope of the pressure gradient vs. flow rate curve arises, i.e. showing an510

unexpected very large third slope (Figure 17). This third slope could not511

be reproduced in any of the microfluidic analogues of a porous medium and512

was found to be related to the blocking of the porous medium due to the513

apparent formation of a gel under these very extreme flow conditions [52].514

4. Conclusions515

The small size of microfluidic devices implies that often their flows are char-516

acterized by low Reynolds numbers especially when the fluids contain addi-517

tives that increase their viscosity. In addition, such additives usually impart518

non-Newtonian behaviour and in particular elasticity to the fluid, leading519

to high Weissenberg number flows in micro-channels. These are ultimately520

responsible for the appearance of elastic instabilities at low or even negligi-521

ble Reynolds numbers. This work summarizes five experimental investiga-522

tions on pressure driven flows in micro-geometries that generate flows with523

a non-negligible component of extensional deformation and where the onset524

of various elastic instabilities are observed.525

In all the symmetric geometries used the flows are Newtonian-like, steady526

and symmetric at low Weissenberg numbers. However, upon increasing the527

Weissenberg number elastic instabilities set in and the flow either becomes528

steady asymmetric or unsteady. When a transition to steady asymmetric529
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flow takes place there is invariably a second elastic transition to unsteady530

flow at a higher Weissenberg number. The path of transitions also depends531

on other relevant dimensionless numbers specific to each geometric flow: for532

flow-focusing it is possible to evolve directly from steady symmetric to un-533

steady flow, without ever going through the steady asymmetric flow, for some534

ranges of the velocity ratio and Reynolds number. Presumably, the different535

transitions are associated with different mechanisms involving elastic normal536

stresses. In some cases extremely high normal stresses lead to a specific flow537

feature which is not observed under weaker flow conditions. In other cases538

the curved streamlines are unable to sustain the normal stresses acting along539

those streamlines as described by the Pakdel-McKinley criterion [14, 15, 17],540

and the flow becomes unstable.541

These elastic instabilities have both advantages and drawbacks in practical542

terms. When the objective is micro-mixing or high rates of heat and mass543

transfer, these low Reynolds number chaotic-like flows of elastic fluids provide544

a useful solution which is not available if the fluids are Newtonian (a similar545

situation here would require higher Reynolds numbers for chaotic advection546

to emerge). However, if the objective is to minimize or delay the existence of547

unstable flows, as when operating with micro-rheometers, then ideally there548

should be no and these transitions impose operational limits.549

As shown in the examples described, new phenomena arise at the micro-scale550

when fluids are non-Newtonian and these flows have interesting features espe-551

cially in combination with other unusual conditions not described here, such552

as in the presence of electrokinetic effects or of gradients in surface tension553

made possible by new developments and advances in micro-manufacturing554
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and surface coating methods. The popularity of micro-flow systems requires555

the miniaturization of flow forcing methods and the use of electric and mag-556

netic forcing mechanisms will certainly become more common as an alter-557

native to pressure driven flow. The combination of these methods with flu-558

ids made from complex additives, will certainly provide an opportunity to559

explore new challenging phenomena. Already good examples are the com-560

binations of microfluidics and optics (optofluidics) and of microfluidics and561

acoustics (acousto-fluidics), for instance for particle mixing or separation in562

micro-channels.563
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Table 1: Formulations of the viscoelastic fluids used.

Acronym

a Polymer Solvent

PAA PEO Water Glycerol NaCl λ

[ppm] [ppm] [%] [%] [%] [ms]

PAAs50 50 0 100 0 1 4±1

PAA50 50 0 100 0 0 54±1

PAAs125 125 0 100 0 1 10±2

PAA125 125 0 100 0 0 129±1

PAAsg200 200 0 85 15 1 87±1

PAAs250 250 0 100 0 1 18±2

PAAs400 400 0 100 0 1 29±2

PEO1000 0 1000 100 0 0 74±1

aPAA: Polyacrylamide; PAAs: PAA with NaCl in water; PAAsg: PAA in water with

NaCL and glycerol; PEO: Polyethylene oxide
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Table 2: Dimensions of the micro-channels used in the works here reviewed (see Figure

4).

Hyperbolic contraction h [μm] D1[μm] D2[μm] Lc[μm]

(Fig.4a) 45 400 54 128

Microfluidic diode

AR [-] h[μm] D[μm] wc[μm] L[μm]

0.73 46 326 63 128

(Fig.4b) 1.26 88 326 70 128

1.71 120 326 70 128

Flow focusing h[μm] D[μm]

Fig.4c 100 100

Confined cylinder

AR [-] BR [%] h [μm] D[μm] H [μm]

0.37 75 58 158 212

0.55 55 58 105 212

1.1 25 58 55 212

0.66 75 105 158 212

(Fig.4d) 1.0 50 105 105 212

1.9 25 105 55 212

1.3 75 213 158 212

2.0 50 213 105 212

3.9 25 213 55 212

Analogues of a porous medium

W1 [μm] W2[μm] Wc[μm] L1[μm] L2[μm] h[μm]

Symmetric arrangement

108 40 40 106 31 103

(Fig.4e) Asymmetric arrangement

108 72 52 106 31 103
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Figure 1: Illustration of the onset of an elastic instability from instantaneous

flow patterns of a PEO solution in a 50:50 water/glycerol mixture flowing

through a serpentine channel (Mcrit ≈ 0.68). From top to bottom: stable flow

(Wi = 0.22); slightly unstable flow, close to the onset of elastic instability

(Wi = 0.24); and unstable flow (Wi = 0.25). Reproduced with permission

from Zilz et al. [20].

28



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

(a)

(b)

Figure 2: Rheological characterization of the viscoelastic fluids at 20 oC: (a)

flow curves in steady shear flow and (b) time evolution of the normalized

diameter measured in the CaBER device.
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Figure 3: PDMS device fabrication procedure. (a) Cross-section of the SU-8

mould with a positive relief. (b) The mixture of oligomer and curing agent

is poured onto the SU-8 mould (thick layer) and placed in the oven to cure

for 20 minutes. (c) After curing, the PDMS thick layer is removed from the

SU-8 mould and access ports are created. (d) The PDMS layer containing

the channel structure is bonded to the glass slide covered with a thin layer

of PDMS and placed in the oven to further seal the channel.
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Figure 4: Scanning Electron Microscopy images of the five planar micro-

channels fabricated from high quality SU-8 photoresist moulds obtained by

means of a high-resolution chrome mask using standard soft lithography:

(a) hyperbolic contraction and sudden expansion; (b) microfluidic diode; (c)

cross-slot device (to be used as a flow focusing micro-device); (d) confined

cylinder; and (e) simplified microfluidic analogues of a porous medium. See

Table 2 for dimensions.
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Figure 6: Effect of Weissenberg number on the dimensionless vortex length

in the steady symmetric regime for the 50, 125, 250 and 400 ppm PAA

aqueous solutions with 1% NaCl flowing through a hyperbolic-shaped micro-

contraction. Adapted from Campo-Deaño et al. [32].
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(a) (b)

Figure 7: (a) Newtonian fluid flow patterns in a hyperbolic diode with AR = 0.73.

Adapted from Sousa et al. [43]. (b) Viscoelastic fluid flow patterns in a microfluidic diode

with AR = 1.26. Adapted from Sousa et al. [42].
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Figure 8: Dimensionless axial velocity profiles along the centreline of the

microfluidic diode, AR = 0.73, for viscoelastic fluid flow under two different

flow rates. The streamwise velocity component (ux) is normalised with the

bulk velocity at the contraction throat (Uc).
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Figure 10: Experimental (micrograph) and numerical (red solid lines) flow

patterns obtained for Newtonian fluid flow in a flow-focusing micro-device,

Q1 = Q2 = 0.3 ml h−1, V R = 1 and Re = 2.8. The separation streamlines

are highlighted by white dashed lines and arrows indicate the flow direction.

Adapted from Oliveira et al. [47].
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Figure 12: Flow classification map in the Wi-VR domain for the flow-focusing

micro-device. The circles indicate symmetric flow, the crosses steady asym-

metric flow and the triangles unsteady flow.
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Figure 13: Flow patterns obtained for the Boger fluid flow around a cylinder

for BR = 50% as a function of AR under similar flow conditions: a) AR =

2.0, Wi = 30.5, Re = 7.8×10−3; b) AR = 1.0, Wi = 30.9, Re = 7.9×10−3; c)

AR = 0.55, Wi = 29.9, Re = 7.6×10−3. Arrows indicate the flow direction.
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(a)

(b)

Figure 15: Average pressure drop gradient as a function of the interstitial ve-

locity for the flow of (a) de-ionized water through the microfluidic analogues

of a porous medium (MCAsym, MCSym) and the porous sand bed (PM); (b) an

aqueous solution of PAA at 125ppm through the microfluidic analogues of a

porous medium (MCAsym, MCSym) and the porous sand bed (PM). Adapted

from Galindo-Rosales et al. [51]. 42
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Figure 16: Wi−Re flow pattern map for the symmetric micro-channel.

Adapted from Galindo-Rosales et al. [51].
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Figure 17: Variation of the pressure gradient with the interstitial velocity for

the flow of low viscosity Boger fluids through a porous medium made of sand

of 400 μm particles (Sauter mean diameter). Adapted from Campo-Deaño

et al. [52].
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