Improving the bandwith of 1-3 connectivity composite receivers using mode coupling
Gachagan, Anthony and Hayward, Gordon (1998) Improving the bandwith of 1-3 connectivity composite receivers using mode coupling. Journal of the Acoustical Society of America, 103 (6). pp. 3344-3352. ISSN 0001-4966 (https://doi.org/10.1121/1.423048)
Full text not available in this repository.Request a copyAbstract
Temporal resolution in an ultrasonic system may be enhanced by the application of mechanical damping to the transducer rear face, thereby reducing internal reverberation and increasing effective bandwidth. However, for thickness drive transducers, this is accompanied inevitably by a reduction in sensitivity and, moreover, manufacture of suitable damping blocks can be difficult, particularly for lower frequency, small signal applications such as the detection of gas coupled ultrasound. This work describes an interesting alternative approach that utilizes the relatively strong coupling between the fundamental thickness mode and first lateral mode in 1-3 connectivity piezocomposite transducers.Finite elementmodeling is used to evaluate the influence of mode interaction on electromechanical coupling efficiency, surface displacement, sensitivity, and bandwidth as functions of the ceramic pillar dimensions for operation into both water and air load media. A range of composite devices was constructed and close agreement between theory and experiment is demonstrated, with a measured device bandwidth of 130% centered at 1.15 MHz. An example of using such a device within a gas-coupled ultrasonic system is presented and the response is shown to compare favorably with alternative transducer configurations.
-
-
Item type: Article ID code: 47461 Dates: DateEvent1998PublishedSubjects: Technology > Electrical engineering. Electronics Nuclear engineering Department: Faculty of Engineering > Electronic and Electrical Engineering
Technology and Innovation Centre > Sensors and Asset ManagementDepositing user: Pure Administrator Date deposited: 11 Apr 2014 11:06 Last modified: 08 Apr 2024 21:24 URI: https://strathprints.strath.ac.uk/id/eprint/47461