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Analysis and interpretation of
compressible fluid interaction upon
the vibration of a circular membrane1

Daniel G. Gorman2, Jaromír Horáček3,
Anthony J. Mulholland4, Maire N. Gorman5

Abstract. The free vibration of a circular membrane in interaction with a fluid con-
tained in a cylindrical boundary is analysed. The fluid is compressible and assumed inviscid.
The resulting modal parameters are described by non-dimensionalised frequencies, mode
shape coefficients and relative modal energy levels between that of the membrane and the
fluid. A simplified “bar” model is introduced as a means of describing the characteristics of
membrane/fluid strong interaction between axisymmetric modes of the membrane and axial
modes of the fluid column only.
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1. Introduction

The influence of a fluid interface upon the vibration of a light flexible structure
has been a subject of growing interest, particularly due to the increased deploy-
ment of thin-walled liquid/gas containers to the point where in certain cases the
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structural elements resemble membranes in contact with fluid. The general
analysis of acoustic/structural vibration interaction problems was presented
in [1], [2], where infinite series solutions for the acoustic pressure and the dis-
placement of the structure were derived from a fundamental solution of the
uncoupled problems, viz. vibration of the structure in vacuo, and acoustic res-
onance in a closed cavity with undeformable walls. These basic models were
extended and applied to problems involving rectangular plates backed by rect-
angular cavities [3]–[6]. With respect to circular plates there has been much
research reported relating to various configurations and restrictions. Lee and
Singh [7] analysed the characteristics of the acoustic radiation emitted from a
vibrating circular plate in free space (travelling waves) and Gorman et al. [8]
considered the case of a circular disc covering a totally enclosed cylindrical
acoustic cavity (standing waves) and in a subsequent publication [9] extended
this analysis to introducing a method for extracting structural modal para-
meters from the fluid/structural interacting modal parameters. Bauer and
Chiba [10] considered the case of a circular plate backed by a cylindrical cav-
ity containing fluid assumed to be viscous and incompressible, and Amabili
et al. [11], [12] considered the effect of depth of incompressible liquid upon
the free vibration of circular and annular plates. With respect to circular
membranes in contact with fluid, a study has been performed by Rajalingham
et al. [13] to the case of a circular membrane vibrating in contact with a gas
contained in an open cylindrical cavity (travelling waves) with the application
to an Indian drum and Tariverdilo et al. [14] presented a comprehensive paper
describing an investigation of the vibration of a circular membrane covering a
totally enclosed cylindrical cavity containing incompressible and inviscid fluid.
This paper commences by applying the method described in [8] to obtaining

the modal characteristics of a circular membrane in interaction with a closed
cavity containing a compressible and inviscid fluid. The aim of the paper is
to then extend the analysis to investigate and describe the important physical
aspects which govern the degree of membrane/fluid interaction as described by
relative modal energy. A simple bar model is introduced which is used to help
illustrate, under certain conditions, the relationship between the natural modal
roots of the coupled system and the relative modal energy of each component of
the coupled system thus enabling us to consider more closely situations where
there is strong structural/fluid vibration interaction.

2. Vibration analysis of the membrane-fluid coupled system

2.1 Basic analysis

The equation of motion, describing the free small lateral vibration w =
= w(r̄, θ, t) of a stretched circular membrane [15] in interaction with an acoustic
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cavity, as shown in Fig. 1, is

ρcha
2 ∂
2w̄

∂t2
−N ∇2w̄ = fa (1)

where

∇2 = ∂2

∂r̄2
+
1
r̄

∂

∂r̄
+
1
r̄2

∂2

∂θ2
, w̄ =

w

a
, r̄ =

r

a
,

N is the constant inplane force intensity, ρc is the membrane mass density,
a and h are the radius and thickness of the membrane, respectively, and f is the
acoustic pressure inside at the interface between the fluid and the membrane.

Fig. 1. Scheme of membrane/fluid
interacting system

The boundary conditions in terms of (r̄, θ, t) are

w̄(1, θ, t) = 0 , |w̄(0, θ, t)| <∞ .

Now writing

w̄m =
∞∑

s=1

χm,sψm,s(r̄) cos(mθ) e
iωt for m = 0, 1, . . . , (2)

where ψm,s (r̄) is the natural mode shape of the membrane in the absence
of fluid interaction and χm,s is a constant for that mode, generally referred
to as the mode shape coefficient for the mode comprising m nodal diameters
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(or angular half waves) and s nodal circles. In this particular case, for a circular
membrane supported at the periphery, the mode shapes ψm,s(r̄) are, according
to [16],

ψm,s(r̄) = Jm(ξm,sr̄)

where ξm,s are roots (values for s = 1, 2, . . . ) computed from the equation
which describes the lateral displacement of the membrane at the periphery to
be zero for all time:

Jm(ξm,s) = 0 .

For particular values of m and s, the natural frequency of free undamped
vibration ωm,s is then

ωm,s =
ξm,s

a

√
N

ρch
=
ξm,s

a
cc

where cc =
√
N/(ρch). Listed below are values of ξm,s for modes of a circular

membrane clamped around the periphery characterised by m nodal diameters
and s nodal circles:

s ξ0,s ξ1,s ξ2,s ξ3,s

1 2.4048 3.8317 5.1356 6.3807

2 5.5201 7.1056 8.4172 9.7210

3 8.6537 10.1735 11.6198 13.0152

where s = 1 represents the node at the peripheral boundary.
For a particular mode of vibration for the membrane in the absence of fluid

interaction, substitute (2) into (1) with f = 0:

N ∇2
[
ψm,s(r̄)

]
cos(mθ) = −ω2m,sρcha

2ψm,s(r̄) cos(mθ) . (3)

Therefore combination of Eqs. (1), (2) and (3) for a fixed value of m gives

∞∑
s=1

[(
ω2m,s − ω2

)
χm,sψm,s(r̄)

]
cos(mθ)eiωt =

f

ρcha
. (4)

The form of the acoustic pressure f acting on the membrane will now be
established by reference to the acoustic cavity. Consider the acoustic cavity
shown in Fig. 1, whose velocity potential ϕ̄ = ϕ̄(x̄, r̄, θ, t) is described (see,
e.g., [1], [2]) by

∂2ϕ̄

∂r̄2
+
1
r̄

∂ϕ̄

∂r̄
+

( a
L

)2 ∂2ϕ̄
∂x̄2
+
1
r̄2

∂2ϕ̄

∂θ2
=

( a
cf

)2 ∂2ϕ̄
∂t2

(5)
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where ϕ̄ = ϕ/(acf) and x̄ = x/L, cf is speed of sound in the cavity and L is
the depth of the cylindrical cavity. The boundary conditions are

∂ϕ̄

∂r̄
(1, x̄, θ, t) = 0 ,

∂ϕ̄

∂x̄
(r̄, 0, θ, t) = 0 , ϕ̄(0, x̄, θ, t) <∞ .

Now writing for a selected value of m

ϕ̄m = Hm(x̄) ·Qm(r̄) cos(mθ) e
iωt (6)

and substituting (6) into (5) gives( a
L

)2 H ′′
m

Hm
= −

[
Q′′m
Qm
+
1
r̄

Q′m
Qm

− m2

r2
+

(
ωa

cf

)2]
= ±k2 (7)

where k is a constant. The case where the right hand side of (7) is equal to
−k2 (harmonic solution) gives

Qm(r̄) = BJm(αr̄) + B̃Ym(αr̄)

where α =
√
(ωa/cf)2 − k2 or k =

√
(ωa/cf)2 − α2 and B̃ = 0 since Q(r̄) must

be finite when r̄ → 0. At r̄ = 1

∂ϕ̄m

∂r̄

∣∣∣∣
r̄=1

≡ dQm

dr̄

∣∣∣∣
r̄=1

= 0 . (8)

Therefore for a selected value ofm, Eq. (8) has roots αm,q (q = 1, 2, . . . ), which
satisfy the equation J ′m(αm,q) = 0. Listed below are values of αm,q which
satisfy this condition. Note that q = 1 represents the node at the peripheral
boundary.

q α0,q α1,q α2,q α3,q

1 0 1.8412 3.0542 4.2012

2 3.8317 5.3314 6.7061 8.0152

3 7.0156 8.5363 9.9695 11.3459

Since
dHm

dx̄

∣∣∣∣
x̄=0

= 0 , Hm = C cos(γ
(λ)
m,qx̄)

where γ(λ)m,q =
√
λ2 − ᾱ2m,q, λ = ωL/cf and ᾱm,q = L̄αm,q, L̄ = L/a, Equa-

tion (6) for a fixed value of m now becomes

ϕ̄m =
∞∑

q=1

Bm,q cos(γ
(λ)
m,qx̄)Jm(αm,q r̄) cos(mθ)e

iωt . (9)
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At x̄ = 1, the axial component of the velocity of the gas and the lateral velocity
of the membrane must be equal, i.e.,

cf
L

∂ϕ̄

∂x̄

∣∣∣∣
x̄=1

=
∂w̄

∂t
for 0 ≤ r̄ ≤ 1 .

Therefore combining (2) and (9) renders

−cf
L

∞∑
q=1

[
Bm,q γ

(λ)
m,q sin γ

(λ)
m,q Jm(αm,q r̄)

]
= iω

∞∑
s=1

χm,sψm,s(r̄) . (10)

Now using the orthogonal properties of the eigenfunction r̄Jm(αm,q r̄) by mul-
tiplying both sides of (10) by r̄Jm(αm,q r̄) and integrating between 0 ≤ r̄ ≤ 1
according to [17] gives

Bm,q =
−2iωL
cf

∞∑
s=1

χm,skm,qs

γ
(λ)
m,q sin γ

(λ)
m,q

(
1− m2

α2m,q

)
J2m(αm,q)

(11)

where for a fixed value of m

km,qs =
∫ 1

0
r̄ψm,s(r̄)Jm(αm,q r̄) dr̄ ,

the value of which can be obtained through standard numerical integration.
Now the pressure f at the surface of the membrane is given by

f = −ρfacf
∂ϕ̄

∂t

∣∣∣∣
x̄=1

where ρf is the fluid density. Therefore combining (9) and (11) renders

f = −2ω2aLρf
∞∑

s=1

∞∑
q=1

χm,skm,qsJm(αm,q r̄)

γ
(λ)
m,q tan γ

(λ)
m,q

(
1− m2

α2m,q

)
J2m(αm,q)

cos(mθ)eiωt . (12)

Substituting (12) into (4) gives

∞∑
s=1

(
ω2m,s − ω2

)
χm,sψm,s(r̄) =

= −2ω2 ρfL
ρch

∞∑
s=1

∞∑
q=1

χm,skm,qsJm(αm,q r̄)

γ
(λ)
m,q tan γ

(λ)
m,q

(
1− m2

α2m,q

)
J2m(αm,q)

.
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Multiplying both sides by r̄Jm(αm,q r̄) and integrating between 0 ≤ r̄ ≤ 1
renders

∞∑
s=1

χm,skm,qs

{
ω2m,s − ω2

[
1− 1

β γ
(λ)
m,q tan γ

(λ)
m,q

]}
= 0 , q = 1, 2, . . . , n

(13)
where

β =
ρch

ρfL
=
mass of membrane
mass of fluid in cavity

.

Now, re-introducing λ = ωL/cf and λm,s = ωm,sL/cf = ξm,s (cc/cf) L̄ where
cc =

√
N/(ρch), cf =

√
γp0/ρf , γ is adiabatic index (γ = 1.4 for air), p0 is

mean pressure of the fluid inside the cavity and ρf is fluid density, then λ2m,s =
= ξ2m,sκ/β where κ = NL̄/(γp0a) and

ξ2m,sκ =
lateral stiffness of the membrane
axial stiffness of fluid in cavity

for designated values of m and s.
Therefore after multiplying (13) by β/ω2 and after some substitutions and

rearrangements, Eq. (13) can now be re-written as

∞∑
s=1

χm,skm,qs

{
ξ2m,sκ

λ2
+

1

γ
(λ)
m,q tan γ

(λ)
m,q

− β

}
= 0 , q = 1, 2, . . . , n . (14)

For a fixed value of m, Eq. (14) can be expressed in matrix form as

am,11 am,12 · · · am,1n

am,21 am,22 · · · am,2n
...

...
...

· · · · · · am,qs · · ·
...

...
...

am,n1 am,n2 · · · am,nn





χm,1

χm,2
...

χm,s

...
χm,n


=



0
0
...
0
...
0


,

i.e.
Aχ = 0 , (15)

where am,qs = km,qsām,qs and

ām,qs =
ξ2m,sκ

λ2
+

1

γ
(λ)
m,q tan γ

(λ)
m,q

− β .
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Equation (15) can be written in the form

Aχ =
[ κ
λ2

KΩ +ΘK − βIK
]
χ = 0 (16)

where

K =



km,11 km,12 · · · km,1n

km,21 km,22 · · · km,2n
...

...
...

· · · · · · km,qs · · ·
...

...
...

km,n1 km,n2 · · · km,nn


,

km,qs =
∫ 1
0 r̄ψm,s(r̄)Jm(αm,q r̄) dr̄ as before, I is unity diagonal matrix,

Θ =



Θm,1 0 · · · 0 · · · 0
0 Θm,2 · · · 0 · · · 0
...

...
. . .

...
...

...
0 0 · · · Θm,q · · · 0
...

...
...

...
. . .

...
0 0 · · · 0 · · · Θm,n


where Θm,i =

1

γ
(λ)
m,i tan γ

(λ)
m,i

and

Ω =



k2m,1 0 · · · 0 · · · 0
0 k2m,2 · · · 0 · · · 0
...

...
. . .

...
...

...
0 0 · · · k2m,q · · · 0
...

...
...

...
. . .

...
0 0 · · · 0 · · · k2m,n


.

Now multiplying (16) throughout by K−1 renders

K−1Aχ =
[
B +

κ

λ2
Ω − βI

]
χ = 0 (17)

where B =K−1ΘK.
Values of λ can be obtained (iterated upon) which renders the determinant

of matrixA equal to zero. Consequently for each of these values (roots) of λ the
corresponding values of mode shape coefficients χm,1, χm,2, . . . , χm,s, . . . , χm,n
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can be obtained. The determinant of this matrix equation is obtained by
performing the LU decomposition [17], whereupon the value of the determinant
is the product of the diagonal terms. Subsequently these root values of λ
which render the determinant zero are substituted back into (17) to obtain the
corresponding values of the mode shape coefficients χm,s (normalized to χm,1 in
the first instance and then to the largest value) that describe which structural
modes are present and dominate. The numerical convergence characteristics
of (17) are described in Appendix. From (14) it can be seen that the natural
roots λ are determined by the factors κ (stiffness ratio), β (mass ratio) and L̄
(geometric aspect ratio).

2.2 Comparison with the results obtained by Tariverdilo et al.

Tariverdilo et al. [14] developed a variational method to compute the nat-
ural frequencies of a circular membrane in contact with fluid contained in a
cylindrical boundary similar to this study. However, these authors considered
an incompressible fluid whereupon Eq. (5) is replaced by the Laplace equation

∂2ϕ̄

∂r̄2
+
1
r̄

∂ϕ̄

∂r̄
+

( a
L

)2 ∂2ϕ̄
∂x̄2
+
1
r̄2
∂2ϕ̄

∂θ2
= 0

and they only reported results for the asymmetric modes of vibration (m 6= 0).
The physical parameters and dimensions were a = L = 60 mm, h = 0.5 mm,
N = 100 N/m, ρc = 2700 kg/m3 and ρf = 1000 kg/m3. By assuming the fluid
to be water (ρf = 1000 kg/m3), we therefore selected the speed of sound waves
in the fluid cf = 1466 m/s. Therefore from the relationships listed between
Eqs. (13) and (14) we arrive at κ = 0.775× 10−6 and β = 0.0225. Accordingly
Table 1 compares a selection of frequency values

(
cfλ/(2πL) [Hz]

)
obtained

from the variational method of Tariverdilo et al. [14] and the analysis described
in this study.

Table 1. Comparison of frequency values (Hz)
obtained by the present study, with those

obtained by Tariverdilo et al. [14]

m, s Tariverdilo et al. Present study

1, 1 19.150 19.433

1, 2 52.895 53.897

1, 3 94.598 92.501

2, 1 32.730 34.234

2, 2 70.797 69.987

2, 3 115.681 112.970

3, 1 46.668 46.586

3, 2 88.911 88.048

3, 3 136.788 134.020
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The results of Table 1 demonstrate reasonably good agreement between
frequency values obtained using the two methods bearing in mind that the
value of cf = 1466 m/s was assumed. This comparison also demonstrates that
the method outlined in this study can be used (with a good level of accuracy)
in an analysis where the fluid is assumed incompressible, simply by using (5),
replacing the Laplace equation to model the velocity potential of the fluid and
using a large value of speed of sound cf .

2.3 Modal energy representation

In this study, since in all cases we are dealing with some degree of struc-
tural/fluid vibration interaction, it would be erroneous to describe any mode
of vibration as either purely a structural mode or an acoustic (fluid) mode.
For most cases the modes are either predominantly structural with acoustic
interference or predominantly acoustic with structural interference. However,
under certain conditions natural modes can exhibit characteristics which can be
more appropriately described as strong interacting modes where the vibration
energy is approximately equally divided between structural and fluid vibration
energy. It is modes such as these which are of most interest and are the main
focus of this study. In an attempt to quantify the degree of coupling and de-
scribe whether modes are mainly structural or acoustic or strongly coupled,
attention will be drawn to the distribution of vibration kinetic energy between
the structural and fluid components of the system.
For the membrane, the peak kinetic energy of vibration KEc for a selected

value of m is calculated from

KEc =
n∑

s=1

KEcs

where

KEcs = πρcha
4ω2

∫ 1

0
[χm,sψm,s(r̄)]

2
r̄ dr̄ ,

noting that the eigenvectors ψm,s(r̄) are orthogonal.
For the fluid the maximum kinetic energy KEf , for a selected value of m, is

calculated from (noting orthogonality of eigenvectors describing ϕ̄m):

KEf =
n∑

q=1

KErq +
n∑

q=1

KExq = KE
r +KEx

where

KErq = ρfπa
2L

∫ 1

0

∫ 1

0

(
V rq

)2
r̄ dr̄ dx̄ ,

KExq = ρfπa
2L

∫ 1

0

∫ 1

0

(
V xq

)2
r̄ dr̄ dx̄ ,
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and by using (9) and (11)

V rq = cf
∂ ˆ̄ϕm,q

∂r̄
, V xq =

acf
L

∂ ˆ̄ϕm,q

∂x̄
,

ˆ̄ϕm,q = Bm,q cos(γ
(λ)
m,qx̄)Jm(αm,q r̄) cos(mθ) .

The percentage energy associated with KEf and KEc are expressed as

% KEx =
KEx

KEf +KEc
× 100 % for total axial fluid energy ,

% KEr =
KEr

KEf +KEc
× 100 % for total radial fluid energy ,

% KEc =
KEc

KEf +KEc
× 100 % for total membrane energy .

A set of energy vectors for the membrane and fluid is defined as follows:

KErq = (%KE
r
1, %KE

r
2 , . . . , %KE

r
q , . . . , %KE

r
n)

is the vector of radial kinetic energy components (q=1,2,. . .,n) of the fluid,

KExq = (%KE
x
1, %KE

x
2 , . . . , %KE

x
q , . . . , %KE

x
n)

is the vector of axial kinetic energy components (q=1,2,. . .,n) of the fluid, and

KEcs = (%KE
c
1, %KE

c
2 , . . . , %KE

c
s , . . . , %KE

c
n)

is the vector of kinetic energy of lateral vibration components (s=1,2,. . .,n) of
the membrane where

%KErq =
KErq

KEf +KEc
× 100 % ,

%KExq =
KExq

KEf +KEc
× 100 % ,

%KEcs =
KEcs

KEf +KEc
× 100 % .

For later reference, the energy ratio Fe(λ) is defined for a selected value ofm as

Fe(λ) =
total energy associated with membrane
total energy associated with fluid

=
KEc

KEf
. (18)

Consequently, having obtained the root values of λ and the corresponding val-
ues of mode shape coefficients χm,1, χm,2, . . . , χm,s, . . . , χm,n, . . . , the relative
energy distribution between the membrane and the fluid components can be
computed and used as a basis to describe the membrane/fluid coupled modal
characteristics.
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2.4 Numerical results

From (17) it is evident that only three selected parameters, namely β, κ

and L̄ (as contained in γ(λ)m,q for vales of q > 1), will determine a unique set of
values of λ, corresponding mode shape coefficients and relative energy vectors.
To demonstrate the benefit of listing relative energy levels, consider the

case of a slender fluid cavity (L̄ = 10) and the mass of the membrane equal
to the mass of the fluid cavity (β = 1). In addition, in an attempt to induce
strong interacting modes, the non-dimensionalised natural frequency of the
first axisymmetric mode of the membrane in the absence of fluid interaction
λ0,1 = ξ0,1

√
κ/β is set equal to that of the first axial mode only (ᾱ0,1 = 0) of

the same fluid cavity with a rigid boundary replacing the membrane. In this
case, from (9), (∂ϕ̄m/∂x̄)|x̄=1 = 0, i.e. γλ

0,1 = π = λ0,1 = 2.4048
√
κ/β, giving

κ = 1.707.
A general expression to describe this postulated condition for strong mem-

brane/fluid vibration coupling would be

ξ2m,s

κ

β
= (ηπ)2 + ᾱ2m,q (19)

where η is the number of axial half waves in the fluid. In our specific case
described above we have selected η = 1, m = 0, s = 1 (ξ0,1 = 2.4048) and
m = 0, q = 1 (ᾱ0,1 = 0). Thus only the axisymmetric modes (m = 0) of
vibration are considered.
Table 2 lists the results of this demonstration where n = 6 in accordance

with the convergence test outlined in Appendix. This table presents details
of the first 6 coupled modes of vibration up to a non-dimensional frequency
λ = 11.227, which is close to that corresponding to the third natural fre-
quency of the membrane in the absence of interaction, λ3 = 11.3028. From
this table it is evident that the modal energy of the subsystems renders a
useful and interesting means of describing the degree of coupling and domin-
ance of the membrane or fluid. It is also interesting to note that for modes
with a strong or moderate structural component, the vector of mode shape
coefficients χ is very well defined. For example for the first two strongly
coupled modes (1 and 2) with frequencies around that corresponding to the
first natural frequency of the membrane in the absence of fluid interaction,
χ = (1,∼ 0,∼ 0, . . . )T and for mode 4, which is once again structurally dom-
inant at a frequency close to that of the second natural frequency of the mem-
brane in the absence of fluid interaction, χ = (∼ 0, 1,∼ 0,∼ 0, . . . )T. On the
other hand, for modes of a strong acoustic nature only where very little energy
is attributed to the membrane, such as mode 5 in Table 2, it is observed that
the vector χ indicates significant contributions from more than one structural
mode.
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Table 2. Modes of free vibration of the membrane/fluid
interacting system with associated energy vectors

λ Mode description

2.600
(mode 1)

� = (1,∼ 0,∼ 0, . . . )T

KEcs = (38.71,∼ 0,∼ 0, . . . )
KExq = (61,∼ 0,∼ 0, . . . )
KErq = (∼ 0,∼ 0, . . . )

Strongly coupled mode at
s = 1, q = 1

3.705
(mode 2)

� = (1,∼ 0,∼ 0, . . . )T

KEcs = (49.42,∼ 0,∼ 0, . . . )
KExq = (50.02,∼ 0,∼ 0, . . . )
KErq = (∼ 0,∼ 0,∼ 0, . . . )

Strongly coupled or st/ac
mode at s = 1, q = 1

6.338
(mode 3)

� = (1,−0.207,∼ 0, . . .T

KEcs = (0.5,∼ 0,∼ 0, . . . )
KExq = (99.5,∼ 0,∼ 0, . . . )
KErq = (∼ 0,∼ 0,∼ 0, . . . )

Almost total fluid axial
energy with small amount
of structural interference,
q = 1

7.206
(mode 4)

� = (∼ 0, 1,∼ 0,∼ 0, . . . )T

KEcs = (∼ 0, 87.6,∼ 0, . . . )
KExq = (10.6, 0.5,∼ 0, . . . )
KErq = (∼ 0,∼ 0,∼ 0, . . . )

Structural dominated mode
with axial fluid interference,
s = 2, q = 1

9.5192
(mode 5)

� = (0.7,−1,−0.95, 0.23, . . . )T

KEcs = (∼ 2,∼ 2,∼ 1, . . . )
KExq = (95,∼ 0,∼ 0, . . . )
KErq = (∼ 0,∼ 0,∼ 0, . . . )

Axial fluid dominated mode
with structural interference,
q = 1

11.227
(mode 6)

� = (∼ 0,∼ 0, 1,∼ 0, . . . )T

KEcs = (∼ 0,∼ 0, 96, . . . )
KExq = (3,∼ 0,∼ 0,∼ 0, . . . )
KErq = (∼ 0,∼ 0,∼ 0, . . . )

Structural dominated mode
with axial fluid interfer-
ence, s = 3, q = 1

2.5 The “bar” model approximation

The configuration investigated in Sec. 2.4 had the ratio L̄ = L/a = 10 and
thus resembles a long slender fluid column where only axial modes would prevail
as shown in Table 2. Also, we proposed that a condition for strong vibration
interaction between the fluid column and membrane would arise when the
natural frequency of an axisymmetric mode of the membrane in the absence of
fluid interaction equated to that of an axial mode of the same fluid cavity with
a rigid boundary replacing the membrane. In this case we selected the first
axisymmetric mode of the membrane set equal to that of the first axial mode
only (ᾱ0,1 = 0) of the same fluid cavity with a rigid boundary replacing the
membrane. The results presented in Table 2 demonstrated this strong vibration
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interaction between the fluid column and membrane at frequencies on either
side of that common frequency (λ = π). In an attempt to investigate further
this same condition leading to strong vibration interaction we propose that
the membrane fluid interacting system studied in this paper can be, to a point,
represented by a “bar” model as shown in Fig. 2. In this model the discrete
mass/spring system represents the membrane and the bar is analogous to the
slender fluid column. By using such an approximate model it is assumed that
only axial oscillations of the fluid column are considered and the membrane
is restrained to free vibration around only one of its natural modes and not
influenced by any of its other natural modes.

Fig. 2. The “bar” model

For the simple “bar” model (see [18]) shown in Fig. 2, it can be shown that
the natural frequency roots λ are calculated from the equation

τ

λ2
+

1
λ tanλ

= β (20)

where λ = ωL/cf , L is length of the bar, cf =
√
E/ρf is the speed of longit-

udinal waves in the bar, E is Young’s modulus and ρf is density of the bar
material,

τ =
K

axial stiffness of the bar
≡

≡ lateral axisymmetric stiffness of the membrane
axial stiffness of fluid in cavity

= ξ20,sκ ,

and

β =
M

mass of the bar
≡ mass of membrane
mass of fluid in cavity

as before. Similarly, we now propose that a condition for strong vibration
interaction between the bar and the discrete spring/mass system will arise
when the natural frequency of the discrete spring/mass system is set equal to
the natural frequency of one of the axial modes of the bar if held rigid at both
ends. This can be represented by

(ηπ)2 =
τ

β
, (21)
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which is similar to (19) with ᾱ2m,q = 0, which implies that this model can
approximate only situations comprising axial fluid modes (q = 1) and axisym-
metric fluid and membrane modes (m = 0). Once again τ ≡ ξ20,sκ and η is the
selected number of half waves present in the axial mode. Therefore combin-
ing (20) and (21) gives

F β
λ = β (22)

where

F β
λ =

1
λ tanλ

1−
(ηπ
λ

)2 .

Also, for this simplified “bar” model we can write the corresponding energy
ratio F be (λ) (introduced in (18)) as

F be (λ) =
vibration energy associated with M

vibration energy associated with the bar
= βF̄ be (λ) (23)

where (see [18])
F̄ be (λ) =

1− cos(2λ)

1− 1
2λ
sin(2λ)

.

Then combining (22) and (23) gives

F be (λ) =

1
λ tanλ

1−
(ηπ
λ

)2 1− cos(2λ)

1− 1
2λ
sin(2λ)

.

Figure 3-top and Fig. 3-bottom are plots of functions F β
λ and F

b
e (λ) to a base

of λ for this “bar” model for the case where η = 1 and 2, respectively, in (22).
Accordingly by (22), the frequency roots are obtained from where the F β

λ curves
intercept with a horizontal line representing any value of β (the corresponding
value of τ is then calculated from (21)) and the relevant energy ratio is then the
corresponding value of F be (λ). In Fig 3 the horizontal lines representing β = 1
and β = 10 are included. Figure 3-top and Fig. 3-bottom demonstrate that for
any value of β the non dimensional frequencies (λ) of the two strongly coupled
modes will lie almost symmetrically about π and 2π, respectively, and as β
and the corresponding value of τ from (22) increase, the frequencies of the two
strongly coupled modes assume closer values around π and 2π, respectively.
Also of interest is the observation that the maximum value of F be (λ) which can
be obtained is approximately 1 and will always be assigned to the second of
these couple modes.
For the case where η = 1 only (interaction with the first bar/fluid axial

mode), Table 3 lists the numerical values of non dimensional frequencies λ
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Fig. 3. Plot of F β
λ and Fbe (λ) to a base of λ for the “bar” model;
top: η = 1, bottom: η = 2



COMPRESSIBLE FLUID INTERACTION 459

T
ab
le
3.
C
om
p
ar
is
on
of
va
lu
es
of

λ
an
d
co
rr
es
p
on
d
in
g

F̄
e
(λ
)
ob
ta
in
ed
fr
om
th
e
“b
ar
”
an
al
y
si
s

(E
q
s.
(2
2)
an
d
(2
3)
)
an
d
fr
om
th
e
fu
ll
co
u
p
le
d
an
al
y
si
s
(E
q
s.
(1
7)
an
d
(1
8)
)

R
o
ot
va
lu
es
of

λ
fr
om
(2
2)
fo
r
th
e

“b
ar
”m
o
d
el

R
o
ot
va
lu
es
of

λ
fr
om
(1
7)
fo
r

th
e
co
m
p
le
te
co
u
p
le
d
m
o
d
el

C
or
re
sp
on
d
in
g

va
lu
es
of

F
b e
(λ
)

fr
om
(2
3)
fo
r
th
e

ro
ot
va
lu
es
of

λ

fr
om
(2
2)
fo
r
th
e

“b
ar
”
m
o
d
el

V
al
u
es
of

F
e
(λ
)
fr
om
(1
8)
fo
r

th
e
ro
ot
va
lu
es
of

λ
fr
om
(1
7)

fo
r
th
e
co
m
p
le
te
co
u
p
le
d
m
o
d
el

L̄
=
10

L̄
=
5

L̄
=
2

L̄
=
10

L̄
=
5

L̄
=
2

τ
≡

ξ
2 0
,s

κ
=
9.
87
2
�

β
=
1

2.
52
0

3.
82
1

2.
60
0

2.
59
7

2.
58
5

3.
70
5

3.
69
7

3.
66
8

0.
57
1

0.
90
6

0.
63
3

0.
63
8

0.
65
3

0.
98
4

0.
95
4

0.
84
9

τ
≡

ξ
2 0
,s

κ
=
98

.7
2
�

β
=
10

2.
92
4

3.
36
7

2.
95
8

2.
95
8

2.
95
4

3.
32
9

3.
32
8

3.
32
3

0.
87
1

1.
06
9

0.
89
5

0.
90
0

0.
93
8

1.
07
0

1.
06
1

1.
00
6



460 D. G. GORMAN ET AL.

of these strongly coupled modes for the pair (β = 1, τ = 9.872) and the
corresponding values of F be (λ) for the “bar” model (solved from (20) and (21)).
This table also compares them to corresponding values of λ and Fe(λ) obtained
from the full comprehensive analysis, i.e., from the solution of (17) and (18)
using (β = 1, τ ≡ ξ20,sκ = 9.872) for L̄ = 10, 5, 2. Similarly, this table list the
corresponding values obtained for the parameters (β = 10,τ ≡ ξ20,sκ = 98.72).
Table 3 shows that the simple “bar” model produces root values of λ which

are reasonably close to the values obtained from the completely coupled ana-
lysis (compare the first two columns) and corresponding values of F be (λ) which
are of the same order as those from the completely coupled analysis. The
reason for these differences in numerical results is that the “bar” model, rep-
resented by (22) and (23), neglects the influence of both radial fluid modes and
contributions from other membrane modes and should therefore not be used
for the purpose of obtaining exact values. However the “bar” model plots of
Fig. 3 are useful in that they give a visual representation of the general influ-
ence of the pairs (β, τ ≡ ξ20,sκ) on the characteristics of the natural roots λ of
these strongly coupled modes and corresponding values of energy ratio.

3. Conclusions

The analysis presented in this paper was primarily related to membrane
interaction with compressible fluids. However it has been shown that when
applied to a case involving interaction with an incompressible fluid it produced
results, which compared favourably with the analysis of another study. Also,
from the analysis and results presented it has been shown that the introduction
and use of modal energy of the membrane/fluid subsystems renders a useful and
interesting means of describing the degree of coupling and dominance of the
membrane or fluid. In this paper a simple “bar” model was used to represent
a strong membrane/fluid interacting vibrating system. Whilst not producing
results of sufficient accuracy compared to those of the coupled and rigorous
analysis of the membrane/fluid system, it did however present a good insight
into the effect of the system parameters upon the overall characteristics of the
interacting system.

Appendix: Convergence

Table A lists the first two values of λ obtained for n = 2, 4, 6, 8 (n denoting
the order of the matrix A in (15)), β = 1, κ = 1.707, L̄ = 10.
From Table A, it is seen that convergence is extremely fast with respect

to n; requiring only n = 6 for a fully converged result to 3 decimal places for
these lower modes. Accordingly, forthwith n = 6 will be used throughout.
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Table A. Convergence

n = 2 n = 4 n = 6 n = 8

2.5829 2.597 2.600 2.600

3.7219 3.708 3.705 3.705
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