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Abstract

In this paper we discuss the prioritisation of healthcare projects where there
is a concern about health inequalities, but the decision maker is reluctant to
make explicit quantitative value judgements and the data systems only allow
the measurement of health at an aggregate level. Our analysis begins with a
standard welfare economic model of healthcare resource allocation. We show
how - under the assumption that the healthcare projects under consideration
have a small impact on individual health - the problem can be reformulated as
one of finding a particular subset of the class of effi cient solutions to an implied
multicriteria optimisation problem. Algorithms for finding such solutions are
readily available, and we demonstrate our approach through a worked example
of treatment for clinical depression.

Key words: health inequalities, mathematical programming, multicriteria
decision analysis (MCDA)

1. Introduction

How best to take into account health inequalities is an ongoing issue in the
theory and practice of health economics. In many developed countries, policy
makers and the public seem to care about inequalities in population health (see
Morton and Airoldi, 2009, for a discussion of the recent history of health in-
equality policy in the UK), and demonstrate this concern through both policy
action and surveys of social values. This preference has been an important pre-
occupation for health economists over the last two decades or so (Williams and
Cookson, 2000; McIntyre and Mooney, 2007). However, it is still not clear how
concerns about inequality should be captured in practical appraisal procedures,
whether at the national level (for example, economic evaluation of technologies,
development of national guidelines) or at the local level (prioritisation of spend
by health authorities on the ground). A particular diffi culty in connecting the-
ory to practice is that health planners are often very reluctant to explicitly state
parameters that reflect differences in importance of one section of the population
rather than another: it is hard to imagine a Minister of Health announcing that
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a QALY accruing to a smoker was to be valued as 80% of a QALY for a non-
smoker, for example. Yet most forms of quantitative modelling seem to require
such explicit tradeoff statements. A further diffi culty in connecting theory to
practice is that most health planners work with aggregate data and population
averages, and do not have access to information about individual members of
the population - indeed for many purposes, information about the distribution
of health status in the entire population may simply not be collected, and plan-
ners have to rely on extrapolation from surveys or field studies. Yet welfare
economic models construct their models of societal value by building upwards
from an individual base (see Østerdal, 2005).
In this paper, we consider the question of how to prioritise in the face of

incomplete information about values and aggregated information about popula-
tion health through the lens of Multicriteria Optimisation (MCO). MCO deals
with the formulation of and solution procedures for optimisation problems where
there are multiple conflicting objective functions which cannot be completely
traded off against each other. Solving a MCO involves identifying all solu-
tions that are effi cient in the sense that they are optimal with respect to some
aggregate objective function within a family of possible functions, rather than
optimising a single unique objective function. Where the family of objective
function consists of all monotonically increasing functions, this MCO definition
of effi ciency collapses to the familiar concept of Pareto effi ciency. Thus, MCO
procedures side-step the problem of explicitly parameterising an objective func-
tion - the client for the analysis is presented with a number of "effi cient", but
possibly very different, solutions, between which they can choose directly. In
some cases the identification of effi cient solutions may be suffi cient to arrive at
a choice (e.g. if there a single, or single acceptable, effi cient solution); but even
in other cases, where multiple effi cient solutions exist, there may be advantage
in focussing discussions on concrete choices between alternatives, rather than
on abstract and polarising questions of how much one values a health benefit to
one sort of person rather than another sort of person.
This paper follows in a line of health economic papers that seek to apply

mathematical programming approaches in health economics (Birch and Gafni,
1992; 1993; Johannesson and Weinstein, 1993; Stinnett and Paltiel, 1996; Earn-
shaw and Dennett, 2003; Anand, 2003; Epstein et al., 2007; Cleary et al., 2010).
It has long been recognised that the ordering derived from the cost per QALY
rule can be interpreted as a heuristic solution to a more general, but implicit,
optimisation problem (Weinstein and Zeckhauser, 1973; Dantzig, 1998). These
more general mathematical programming formulations model healthcare pri-
oritisation as resource allocation subject to a fixed budget constraint, where
the opportunity costs of choosing a particular healthcare investment are explic-
itly modelled. The mathematical programming framework can take account
of issues such as indivisibilities, returns to scale, interactions between alterna-
tive investments, and the availability of recourse actions if investment decisions
taken under uncertainty do not yield satisfactory results. The paper of Anand
(2003) in particular is similar in spirit to the present work in that the author
observes the healthcare resource allocation problem evokes conflicting values
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and considers how optimal solutions may differ depending on the choice of ob-
jective function. However, to the best of our knowledge, MCO has not yet been
proposed in a health economics context.
Equity can be captured in various ways in the context of the mono-criterion

models already proposed in the literature. For example, a social planner can
impose through constraints that a certain amount of resources are devoted,
or a certain amount of health is delivered, to some particular group (Stinnett
and Paltiel, 1996). Such an approach may - arguably - be appropriate in
certain situations (for example, if one population group deserves redress for
some previous wrong, then a mathematical program could be constrained so
that they are compensated to the extent that they were previously wronged).
But is has clear disadvantages, in general. For example, it may be simply
impossible to find a solution that meets all constraints. Imposing constraints
on lower levels of resource consumption in particular may have perverse effects,
where required expenditure limits for one group may only be possible if they
are provided with ineffective or indeed harmful treatment.
In this paper we seek to make a number of contributions:

• we introduce MCO concepts and relate these to the welfare economic
theory of health as it relates to health inequality;

• we show that the commonly used but ad hoc approach of representing
equity concerns through constraints recommends solutions that do not
satisfy a multicriteria effi ciency condition;

• we show through a worked example that MCO is workable technology for
healthcare resource allocation, where project selection is modelled through
continuous or discrete decision variables.

The structure of the paper is as follows. In Section 2 we outline a basic model
of healthcare resource allocation. In Section 3 we present key MCO concepts
and demonstrate how they relate to the model of the previous section. In
Section 4 we present an example based on prioritising treatments for depression
in England, and Section 5 concludes.

2. Our model

2.1. The (health-related) welfare economic frame
How should a social planner think about choice between alternative health-

care investments? A common approach in health economics is to assume that
such investment decisions are only value-relevant insofar as they have influence
on the health of a population captured through a Health-Related Social Wel-
fare Function or HR-SWF. A substantial theoretic literature exists on the
underpinning normative theory - see Culyer (1989), Wagstaff (1991), Bleichrodt
(1997), Williams and Cookson (2000), Østerdal (2005) and Epstein et al. (2009)
- as well as a growing body of empirical research (Dolan, Shaw, Tsuchiya and
Williams 2005; Dolan, Edlin and Tsuchiya 2008).
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The core idea behind the HR-SWF can be presented as follows. Let
N={1, ..., i, ..., N} be the index set for the members of the population. A
very general form for the HR-SWF is as follows:∑

j∈N
wju (hj) (1)

The variable hj ∈ R+ represents a measure of the lifetime health for person
j. The concave increasing function u : R+ 7−→ R+ captures the idea that the
more health someone has, the less valuable (to the social planner) a marginal
increase is. The scaling factor wj reflects that the health of certain people may
be valued more than other people, because of certain characteristics of these
people (for example, some of them may be smokers, or may have dependants).
If wj = w∀j, then this HR-SWF is interpersonally anonymous in the sense that
the same health benefit (for example, one QALY) is valued the same when one
individual receives it as when another individual at same level of health does.
The HR-SWF presented in (1) is separable in the sense that it is possible

to value a health gain to one person without knowing anything about what
health gains accrue to other people. This is not as limiting as it might ap-
pear: many non-additive HR-SWFs (e.g. the CES function) can be transformed
by a monotonically increasing transformation to an additive function, and are
thus “strategically equivalent”to an additive function, in the sense that in any
optimisation problem, the additive transformed version of the function can re-
place with original non-additive function without changing the optimal solution.
There are however functions — in particular the Rawlsian maximin function —
that cannot be be transformed thus, and there are situations where one may
wish to model interdepencies between persons - for example in the case where
there are "caring externalities" (Culyer, 1989)- and so this is not a completely
vacuous assumption.
Such welfare models are indispensable for theoretic analyses, but but have

limitations for purposes of practical use in an appraisal or resource allocation
context. A particularly practical diffi culty with this model is that it seems to
necessitate measuring the health of every individual in a population and plan-
ning based on that individual level data. This is unlikely to be possible. One
way round this diffi culty is to work with a simpler function. Where health
improvements are marginal, this can be justified. In particular, for health im-
provements δ = (δ1, ..., δj , ..., δN ) that are are "small" in the sense that the first

order Taylor series u
(
h0j + δ

)
= u

(
h0j
)

+
du(h0j)
dh δj is an adequate approximation

of the u (hj)s, equation (1) can be simplified as:∑
j∈N

wju
(
h0j
)

+
∑
j∈N

du
(
h0j
)

dh
wjδj (2)

Maximising equation (2) by varying δ is thus equivalent to maximising
∑
j∈N

du(h0j)
dh wjδj

. Thus knowledge of h0 = (h01, ..., h
0
j , ..., h

0
N ) is not required directly, except
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through the derivatives.
Two arguments that can be used to justify the claim that investments typ-

ically have a "small impact on individual health" and hence justify the Taylor
series approximation are as follows:
• healthcare consumption occurs disproportionately late in life, and in-

deed disproportionately shortly before death (see Payne et al., 2007 for a recent
review), and so, logically speaking, this consumption can only have a rather
marginal impact on lifetime health;
• as is stressed in cost effectiveness textbooks (e.g. Drummond et al.,

2005), healthcare investments decisions will normally be incremental (e.g. the
decision to upgrade from first to second generation antipsychotics) and so if the
decision is negative, patients will not be denied treatment entirely, but rather
will be offered a (perhaps only slightly) less effective treatment.
Thus, while the framework of this paper is not always appropriate, it will be

in a wide range of common decision making settings.
Another possible setting where one might consider a health intervention

“small” is when the intervention has a small chance of a considerable health
benefit. However, how to take equity into account in situations where outcomes
are risky remains a philosophically contentious issue, raising deep issues in the
foundations of decision theory and welfare economics (see e.g. Fleurbaey, 2010).
For the purposes of our present discussion, let us schematically distinguish an ex
ante and ex post view of the healthcare system: someone who takes the ex ante
view sees the role of the healthcare system as being to improve the quantity
and distribution of chances at health; someone who takes the ex post view sees
the role of the system as being to improve the quantity and distribution of
actual realised health outcomes. Thus, in the ex ante view, a small chance
of a considerable health benefit is indeed a small (expected) health benefit to
the individual; but someone who takes the ex post view would refuse to accept
this line of reasoning, observing that the individual will either experience the
considerable health benefit or none at all, and in no event will they actually
experience a small health benefit. Thus, insofar as small chances of considerable
benefits are considered “small” under the ex ante view, and not under the ex
post view, the ex ante view is more compatible with our framework presented
here. To see how this might be relevant, consider that many public health
interventions will provide small increases in the chances of considerable health
benefits (e.g. decreasing the salt content of bread will slightly decrease the risk
of stroke for everyone in the consuming population); thus taking an ex ante view
of equity may make it easier to justify considering decisions about investments
in such interventions within our framework.
To see how this framework might be used, consider a social planner who has

to choose between possible healthcare investment alternativesM={1, ..., i, ...M}
by choosing x = (x1, ..., xi, ...xM ) in some feasible set X ⊆ [0, 1]M . xi =0
represents the situation where some particular alternative i is unfunded, xi =1
where it is fully funded, and any intermediate values represent the situation
where it is partially funded. Associated with each investment decision xi is
a set of health improvements δij for each individual j. Suppose that health
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benefits from different alternatives combine additively so that individual j’s
total health consequent on the allocation will be hj +

∑
i∈M

δijxi. Note that

if decision variables are constrained to be binary, horizontal equity judgements
may be embedded in this structure in the problem itself, in the sense that the
social planner may choose to consider "Cholinesterase inhibitors for Alzheimer’s
disease" as a single investment alternative, or to split it into "Cholinesterase
inhibitors for early to middle stage Alzheimer’s" and "Cholinesterase inhibitors
for late stage Alzheimer’s": the latter case represents a judgement that it would
be acceptable to prescribe in the early to middle stages only, and withdraw the
drug for patients in the later stages.
Given the approximation (2), the social planner’s problem can be written

as:

max
x

∑
j∈N

αj
∑
i∈M

δijxi such that x ∈ X (3)

where the weights αj =
du(h0j)
dh wj . We stress that a higher αj for individual

j may be driven either by
du(h0j)
dh (reflecting poor health) or by wj (reflecting

individual characteristics). This is an important analytic distinction. For
example, although government policy in England has recently prioritised health
gains for people of lower socio-economic status, our reading of the relevant
policy documents is not that socio-economic status itself is taken to have moral
significance. Rather it is that people in the lower socio-economic classes have
poorer expected health, and it is this which is morally objectionable.
In this paper we will be consider two distinct versions of (3): in the continuous

version, each entry, xi takes a value in the closed interval [0, 1]; in the discrete
version, each entry xi takes a value in the discrete set {0, 1}. The choice between
discrete or continuous variables may depend, for example, on the underlying
healthcare technology (pharmaceutical provision for a particular population can
be implemented at any level between full and zero, but purchasing a fraction
of a dialysis centre may not be possible). Of course mixed versions with both
continuous and discrete versions are possible, but to discuss this case specifically
would raise no new interesting issues. The relative appropriateness of modelling
healthcare investment decisions as continuous versus discrete variables has been
a source of contention in the literature (Birch and Gafni, 1992; Johannesson
and Weinstein, 1993). We do not take a view on the appropriateness of one
relative to the other in general, but consider that each is appropriate in at least
some situations, and this is suffi cient justification for discussing both. In any
case, much of the time our discussion applies to both versions and so we will be
purposely non-specific about the domain of the variables.
It quite simple to reframe HR-SWF (3) in terms of aggregates rather than

individuals. Let the index set of subpopulations be P={1, ..., k, ..., P} and write
the index sets of members of the subpopulations asN1 = {1, ..., N1};N2 = {N1+
1, ..., N2}...NP = {NP−1+1, ..., NP } for suitable numbers 0 < N1 < N2 < ...NP
where . Then (3) is equivalent to:
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max
x

∑
k∈P

∑
j∈Nk

αj
∑
i∈M

δijxi such that x ∈ X (4)

If all members j of subpopulation k have the same weight Ak then (4) can
be rewritten as

max
x

∑
k∈P

∑
j∈Nk

Ak
∑
i∈M

δijxi such that x ∈ X (5)

then by factoring out the Ak and interchanging summation signs, we get

max
x

∑
k∈P

Ak
∑
i∈M

∑
j∈Nk

δijxi such that x ∈ X (6)

and if we rewrite ∆ik =
∑
j∈Nk

δij ∀i, k then (6) can in turn be rewritten as

max
x

∑
k∈P

Ak
∑
i∈M

∆ikxi such that x ∈ X (7)

As it stands this model is unlikely to be usable to support resource allocation
in practical settings. For one thing, it is unlikely that a social planner who was
prepared to commit to a determinate wj . For another, any choice of u(·) would
also be contentious. And even if a function u(·) could be agreed upon, equation
(7) additionally requires the statement of the derivatives

du(h0j)
dh and hence in

general knowledge of the complete distribution of population health h0. Hence
there is likely to be uncertainty about the weights αj and thus Ak. The purpose
of this paper is to propose some ways in that this uncertainty might be handled.

3. Multicriteria optimisation

3.1. Basic concepts

MCO is a generalisation of mathematical programming in which, rather than
a unique objective function, there are multiple, possibly conflicting "criteria
functions". MCO falls within the general intellectual domain variously known as
Multicriteria Decision Making, Multicriteria Decision Analysis and Multicriteria
Decision Aid, henceforth referred to as MCDA (for review volumes see Belton
and Stewart, 2002 and Figueira et al., 2005).
MCDA is itself not a new idea in health economics. Indeed, multicriteria

techniques have been used in order to prioritise healthcare investments on a
more or less ad hoc basis for many years - see reviews by Mullen (2004), Devlin
and Sussex (2011), Airoldi and Morton (2011) and Morton et al. (forthcoming).
Generally such techniques have taken the form of some sort of additive scoring
and weighting method, either ad hoc, or within a formal framework such as
Multiattribute Utility Theory.
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A common approach to incorporating inequality aversion in such scoring
models is to define an equity criterion, as for example in Wilson et al. (2006)
and Airoldi et al. (2011), alongside a health benefit or effectiveness criterion,
to assess performance on both criteria (possibly among others), weight criterion
scores and sum up. This may not be an ideal approach in general, because
equity, considered as a criterion, may plausibly not be preferentially independent
of other criteria, in the sense that how much one cares about a change in equity
may depend on the levels of other criteria. Such violations of preferential
independence violate the core assumptions of the additive value model. To see
the limitations of this approach, consider the example of Baltussen and Niessen
(2006). This model has a "cost-effectiveness" criterion, a "severity of disease"
criterion, and two equity criteria, based on whether the disease is a disease of the
poor and whether it is a disease of the young respectively. The criterion "disease
of the poor" in particular has a weighting of 40, indicating that according to their
(illustrative) numbers, being designated a treatment for a "disease of the poor" is
worth 40 points in their value function. However, one could plausibly argue that
how many points one is prepared to give to a treatment because it is a "disease
of the poor" should depend on whether a treatment is considered to be effective
or not. In the limit, one presumably would not be prepared to give 40 points
to a treatment for a treatment for a disease of the poor that was completely
ineffective and discredited (for comparison, in Baltussen and Niessen’s table,
this would far exceed the 5 points which the undoubtedly worthwhile "inpatient
care for acute schizophrenia" option earns).
An alternative approach to handling inequality aversion through capturing

equity as a criterion in an MCDA model is to consider the health gains to
different population groupings themselves as the multiple criteria. In such an
approach it is easy to relate the value model to formula (7). This overcomes the
theoretic diffi culty about criterion independence. However, as noted above, a
drawback from the point of view of practical elicitation is that social planners are
likely to be extremely reluctant to state tradeoffs between different population
subgroups directly. Hence an approach that can deal with uncertainty about
the weight parameters is required.
This leads us into our discussion of MCO. MCO problems are typically

written in the following notation, where P = {1, ..., P} is the index set of a
set of criteria that a decision maker may wish to maximise. Observe that
the critical difference from a standard mathematical program is that there are
multiple criteria functions, separated by commas, instead of a single objective
function.

max
x
W1(x), ...,WP (x) such that x ∈ X (8)

We will write the vector (W1(x), ...,WP (x)) as W (x).
In the multicriteria setting, one way to define the concept of effi ciency is as

follows.

Definition 1. A solution x′ is effi cient if there is a monotonically increasing
functional v(·) such that v(W (x)) ≤ v(W (x′))∀x ∈ X.
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This is slightly different from the more familiar definition for x′ to be ef-
ficient (there has to be no solution x such that Wk(x) ≥ Wk(x′)∀k ∈ P and
∃ko:Wko(x) > Wko(x′)) but can be easily seen to be equivalent (to see that our
definition implies the usual definition, observe that if our definition holds but
not the familiar definition, v(·) cannot be increasing which is a contradiction;
if the familiar definition holds then we take v(·) = Wko(·) and so our definition
must hold). The reason for using this non-standard definition will become clear
in the ensuing.
For our purposes, however, this definition seems excessively general. We are

not interested in all possible functionals, but only those functionals that could be
reasonably described as inequality averse, and Definition 1 includes functionals
that model both inequality averse and inequality seeking preferences.
A refinement of the concept of Definition 1 is to specify effi ciency relative

to the unit simplex Ao={(A1, ..., AP ) ∈ RP++ :
∑
k∈P

Ak=1} (the restriction that

weights sum to 1 is an arbitrary normalisation).

Definition 2. A solution x′ is convex effi cient if there is a set of weights
{A1, ..., AP } ∈ Ao such that

∑
k∈P

AkWk(x) ≤
∑

k∈P
AkWk(x′) ∀x ∈ X.

Solutions that are effi cient but not convex effi cient are called "unsupported"
effi cient solutions. It is well-known that in cases where the feasible set is con-
vex the set of effi cient and convex effi cient solutions coincides (Ehrgott, 2005).
Hence, if the feasible set is convex, there are no unsupported effi cient solutions.
A further refinement of the concept of effi ciency is to specify effi ciency rela-

tive to the linear additive functional with weights in some given set A ⊆ Ao.

Definition 3. A solution x′ is A-effi cient if there is a set of weights {A1, ..., AP } ∈
A such that

∑
k∈P

AkWk(x) ≤
∑
k∈P

AkWk(x′) ∀x ∈ X.

Thus, the critical difference between Definition 2 and Definition 3 is that the
former uses the whole of the weight simplex Ao and the latter uses a specific
subset of the weight simplex, A. Observe that since all A-effi cient solutions are
convex effi cient, no A-effi cient solutions are unsupported.
This refinement is particularly relevant in our case, as some groups may

be clearly disadvantaged relative to others, and so may attract higher weights.
Hence, what may be useful to a social planner interested in solving (7) but
unsure of the values of the Aks is the A-effi cient solutions to a problem of the
form:

max
x

∑
i∈M

∆i1xi, ...,
∑
i∈M

∆iPxi such that x ∈ X (9)

where A is defined by a set of constraints on weights (for example, perhaps
the weight associated with population 1 may be less than or equal to the three
quarters of the weight associated with population 2). As it happens, algorithms
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for finding A-effi cient solutions to MCO problems have been an active area for
research in recent years (Liesiö et al., 2007; Argyris et al., 2011).

3.2. Non-supported effi cient solutions

An example of effi cient but non-convex effi cient solutions can be constructed
in settings where the dimensions are gains to different population groups. In
the example of Figure 1, the social planner aims to maximise health gains to
population groups 1 and 2 and there are three discrete solutions a, b and c,
all of which are are effi cient, but only a and b are convex effi cient: any linear
isopreference line will pick out a or b as superior to c.

a

b

c

health gain to
population group 1

health gain
to

population
group 2

a

b

c

health gain to
population group 1

health gain
to

population
group 2

Figure 1. Three effi cient solutions, two of them convex effi cient

There is a rationale for considering point c as "better than" a or b, in the
sense that it is a "good compromise". Indeed, if the population groups are
sociologically meaningful entities, the members of which perceive themselves as
having common interests and the ability to undertake common actions (rather
than purely statistical constructs, such as socio-economic groups), then one
could view c as the likely outcome of some sort of bargaining process between
these entities. However, this seems to lead to a view of healthcare prioriti-
sation as a (perhaps implicit) negotiation between different sections of society
(the reader is referred to Hauck et al. (2004) for a fuller development of this
perspective). This choice is, however, incompatible with the analysis developed
in this paper, as such a solution would not be an A-effi cient solution to (9).
In the light of this analysis, it is interesting to consider the practice of impos-

ing equity constraints directly, as recommended by Stinnett and Paltiel (1996)
and others in the mono-criterion environment. To fix ideas consider again the
case where there are two population groups. In that case, (9) specialises to:

max
x

∑
i∈M

∆i1xi,
∑
i∈M

∆i2xi such that x ∈ X (10)
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In the case where population group 1 was worse off than population group 2,
in our approach this could be captured in a weight constraint setA = {(A1, A2) :
(A1, A2) ∈ R2++, A1 +A2=1 and A1 ≥ A2}. In contrast, in the mono-criterion
environment, when equity constraints are used, this concern about equity would
be captured by adding an additional constraint on the decision variables, and
the relevant math program would be:

max
x

∑
i∈M

∆i1xi +
∑
i∈M

∆i2xi such that x ∈ X and
∑
i∈M

∆i1xi ≥ B (11)

It is quite easy to show that, in the discrete version of this problem, there can
be values of B for which (11) has solutions which are not A-effi cient with respect
to (10). Figure 2 demonstrates this using the example of Figure 1. As noted
above, c is not convex effi cient, and hence cannot be A-effi cient. However, if B
is set as shown on the diagram (and so a is "cut off") and the (linear) isoquant
of the objective function is the diagonal line through c then c will be chosen as
an optimal solution to (11) over b. Hence, the policy recommendations that fall
out from the use of equity constraints cannot be justified within our framework.
Choices about how to model equity (e.g. about whether to model equity in
the constraints or in the objectives of a mathematical program) seem to be
made on quite casual grounds: it is important in our view that analysts should
understand that different models can lead, not only to different solutions, but
to different sorts of solutions.

c

health gain to
population group 1

health gain
to

population
group 2

B

b

a

c

health gain to
population group 1

health gain
to

population
group 2

B

b

a

Figure 2. c is optimal but not A-effi cient

3.3. Relation to classical view of economic inequality

There is a classical literature on the comparison of inequal distribution of
economic goods (such as income and health), motivated by the need to make
statements such as "income is distributed more unequally in the United States
than in the United Kingdom", and the aim of the current section is to compare
our framework with the ideas in that literature. The classical line of research,
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beginning with Atkinson (1970) and Kolm (1969), and given its definitive state-
ment in the first edition of Sen (1997), seeks to understand the comparison of
different distributions of income through an analogy with the comparison of
gambles (i.e. distributions of probability mass). Intuitively, a risk averse de-
cision maker will like a monetary gamble more (less) if the probability mass is
concentrated (spread out), so that the expected value of the gamble remains
the same but there are lower (higher) chances of both better and worse out-
comes; in a similar way, an inequality averse social planner will like an income
distribution more (less) if the same amount of income is concentrated (spread
out) by transferring income from richer to poorer (poorer to richer) individuals.
This sort of observation gives a way to make inequality comparisons between
different distributions of income.
The clearest statement of the seminal result in this literature is the pa-

per of Dasgupta, Sen and Starrett (1973). A slightly simplified version of
what these authors show is the following. For some real-valued total income
I and some natural number n of people, define Z(I) as the set of possible or-
dered distributions I, i.e. vectors z = (z1, ..., zn) with z1 ≤ ... ≤ zn and
n∑
zi = I
i=1

. For z′ and z′′ ∈ Z(I), the following conditions are equivalent: (i)

for all strictly Schur-concave social welfare functions v(·), v(z′) > v(z′′); (ii)
the Lorenz curve (showing cumulated income) associated with z′ is everywhere
(nonstrictly) above the Lorenz curve associated with z′′; (iii) z′ can be obtained
from z′′ by a series of ("Pigou-Dalton") transfers of income from rich to poor.
These three conditions provide different perspectives on the statement "z′ is a
more equal distribution of income than z′′": (i) relates the concept of inequality
to an abstract mathematical concept, that of the Schur-concavity of a function;
(ii) provides a computational way to test for two distributions whether one is
definitely more unequal than another; and (iii) gives a constructive perspective,
showing how we might move from a less to a more equal distribution.
Extensions and variations of this approach have been widely studied in both

general economics and in health economics. For example in the economic main-
stream, Shorrocks (1983) shows how to compare distributions with different sum
total incomes using Generalised Lorenz curves. In health economics, Wagstaff
(1991, 2002) discusses the use of "concentration curves" in the place of Lorenz
curves to determine which of two distributions are more unequal in the sense
that richer people are more healthy and poorer people are less healthy; Allison
and Foster (2006) and Sonne-Schmidt et al (2013) discuss how to compare dis-
tributions where only ordinal data relevant to well-being is available, by defining
improving (degrading) transfers of population between ordinal categories.
To highlight the relationship between this sort of approach and our approach

in the current paper, it is instructive to define an effi ciency concept along the
lines of condition (i) of Dasgupta, Sen and Starrett. This definition is clearly
analogous to our Definitions 1-3, and comparing Definition 3 and Definition 4
may be a useful way of understanding the distinctive features of our approach
in relation to that of the classical economic inequality literature.
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Definition 4. A distribution z′ is DSS-effi cient if there is a strictly Schur-
concave functional v(·) such that v(W (z)) ≤ v(W (z′))∀z ∈ Z(I).

We highlight three differences between Definitions 1-3 and Definition 4.

• Firstly, Definition 4 contains no mention of the increasingness of the func-
tion v(·). One way to look at this is to observe that as the result is
restricted to distributions of some determined amount I of total income,
there will not be two distributions z′ and z′′ ∈ Z(I): z′ ≥ z′′. Therefore,
in definition Definition 4 the issue of increasingness or otherwise of v(·)
does not arise. As noted, Shorrocks (1983) and other authors have ex-
plored the situation where the assumption of constant sum total income
is relaxed.

• Secondly, the framework of Dasgupta, Sen and Starrett embeds a symme-
try assumption in the sense that all Schur-concave functions will assign
the same value to all permutations. In our framework, we make no such
symmetry assumption: indeed in our original statement of the HR-SWF
in equation (1), we explicitly allow that the health of members of the
population may be weighted differently (e.g. because their poor health is
self-inflicted). If all weights wj are the same, then αj effectively collapses

to
du(h0j)
dh (possibly multiplied by an irrelevant constant), and since u (·) is

concave by assumption.

• Thirdly (unlike for Dasgupta et al.), we want to move beyond concepts
of the type of Definition 1 and Definition 4, to concepts of the type of
Definition 3, that allow us explore how the implications of arbitrary weight
sets. This is likely to be useful since while decision makers may be unable
to assign precise tradeoff weights to health gains for different population
groups, they may be quite able to reject both grossly inequality-sensitive
and inequality-insensitive weights, and hence make statements such as "a
health gain to the most deprived population subgroup is worth between
120 and 140% of the same health gain to the least deprived population
subgroup".

4. Example

4.1. The resource allocation problem

In this section, we present a numerical example to illustrate the concepts
developed above. The example is based on a model of treatment for depression,
described in Morton et al. (2008). Two features of depression are salient. One
is that is that the temporal characteristics of depression are very variable: some
sufferers may experience a single episode of depression and then recover fully,
while others may experience recurrent episodes, while still others may experience
an extended, unremitting chronic depressive episode. One of the challenges in
treating depression cost-effectively is therefore to find ways to target resources
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to sufferers whose illness will not spontaneously remit without treatment, hence
the popularity of "stepped care" models (NICE, 2004). Another relevant feature
of depression is its relatively high population prevalence - e.g. 2.6% in the UK
according to the Psychological Morbidity Survey of 2000 according to Singleton
et al (2001) - and the presence of significant unmet need for care (Andrews and
Henderson, 2000).
Depression has three severity levels, and these three severity levels are crossed

with the transitory/ recurrent/ chronic distinction suggested above, to give nine
population groups in total. For an inequality averse social planner, treatments
that benefit those in the most unfortunate group should be prioritised. How-
ever, while it is clear that, for example moderate recurrent depression is worse
than moderate transitory depression, it is not clear how it stands relative to
severe transitory depression. Hence the population groups cannot be ordered,
but they can be quasi-ordered as shown in Figure 3 (population groups will
henceforth be referred to using the 3-letter codes on the figure). The intended
interpretation of Figure 3 is that severe chronic is worse than severe recurrent
and moderate chronic depression and so on. We define A by requiring that the
weight attached to alternatives that benefit worse off patients is constrained to
be higher than the weight for less badly-off patients, requiring weights across
the nine patient groups to sum to 1, and requiring that the weight assigned
to alternative projects benefitting sufferers of mild transitory depression is at
least 1/12 (bearing in mind that weights across all nine categories must sum to
unity). The use of 1/12 as a lower bound for the weight of the lowest priority
group is purely illustrative, and other numbers could be chosen.

Figure 3. Ordering of depression subgroups

We consider three sorts of mutually exclusive alternatives for each population
group: improving coverage, improving the treatment mix as per NICE guide-
line at current treatment levels, and improving both coverage and treatment
mix (with the exception of MIT, for whom we only model extending coverage;

14



appropriate treatment for this group consists primarily of watchful waiting and
so there is little to be done with improving treatment mix). The problem is
thus one for which there are multiple clusters of mutually exclusive interventions
(Johannesson and Weinstein, 1993). Where decisions variables are discrete this
is known in the operations research literature as the multiple choice knapsack
problem (Kellerer et al., 2004). Costs and benefits of these alternatives as
shown in Table 4. Benefit estimates draw on modelling described in Morton
et al. (2008); costs draw on Secta (2004). We will suppose that costs com-
bine additively and there is a fixed budget available for expenditure, i.e. that∑
i∈M

cixi ≤ B for some budget B .

Benefits (QALY 000s) Costs (£ ms)
Mix Cov Both Mix Cov Both

1. Mild transitory (MIT) - 1.2 - - 13.7 -
2. Moderate transitory (MOT) 0.1 4 4.2 2.6 13.3 17.7
3. Severe transitory (SET) 0 3 3.1 2 5.1 8.3
4. Mild recurrent (MIR) 0 0.4 0.5 10.1 9.5 26.3
5. Moderate recurrent (MOR) 0.3 1.7 2.1 15 14.1 39.2
6. Severe recurrent (SER) 0.6 3.5 4.5 9.9 10.6 27.1
7. Mild chronic (MIC) 0.1 0.3 0.5 4.1 2.8 9.8
8. Moderate chronic (MOC) 0.3 0.9 1.3 5 3.4 11.7
9. Severe chronic (SEC) 0.2 0.8 1.3 2.4 1.6 5.6
Table 4. Costs and benefits for investment alternatives for depression
Hence, we have all the components of a MCO problem of the form (9). We

will consider now consider how to characterise the A-effi cient solutions in both
continuous and discrete versions of the problem.

4.2. Analysis of the continuous version

From a formal point of view, we are interested in finding A-effi cient solutions
to the MCO problem, which is a specialisation of problem (9).

max
x

∑
i∈M1

∆ixi, ...,
∑

i∈MP

∆ixi

such that∑
i∈M

cixi ≤ B (i)∑
i∈Mk

xi = 1 ∀k ∈ P (ii)

x ∈ [0, 1]M (iii)

(12)

In this formulation, P ={1, ..., P} with P = 9 andM ={1, ...,M} withM =
25 are the index sets for the population groups and alternatives respectively.
M1 throughMP is a partitioning ofM into alternatives consumed by each of
the population groups. Constraint (i) is the budget constraint; constraints (ii)
ensure that only one alternative is chosen for each population group; constraint
(iii) ensures the decision variables lie in [0, 1].
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For each weight vector α a family of solutions to (12) for all values of B can
be generated by an algorithm described in Johannesson and Weinstein (1993).
This algorithm is proved optimal in Section 1 of Sinha and Zoltners (1979), a fact
which seems not to be known in the health economics literature (Johannesson
and Weinstein cite a 1991 unpublished PhD thesis in Swedish as their authority).
There are three stages to the algorithm: (i) the elimination within cluster of
dominated alternatives, (ii) ordering of the remaining alternatives within cluster
by cost and computation of the incremental cost effectiveness ratios, and finally
(iii) ranking of the resulting incremental increases in provision. Since the
clusters are population groups, and weights are specific to population groups,
the dominance relation does not depend on the choice of α and we are able
to carry out steps (i) and (ii) in the usual manner. (In fact, elimination of
dominated alternatives leads to the elimination of all the "Mix" alternatives,
leaving 17 alternatives, two for each population group except MIT.)
Carrying out step (iii) without knowledge of which α is to be applied is

problematic, however. Hence, we turn the problem around, asking, for any
pair of increments i′ and i′′ is there a choice of α which leads to i′ being less
cost-effective than i′′? This can be done by solving the following linear program:

min
α
αk(i′)∆i′k/ci′ − αk(i′′)∆i′′k/ci′′ such that α ∈ A (13)

In the event that the value of (13) is greater than 0, then it is impossi-
ble for increment i′ to be ranked lower than increment i′′ by any choice of α.
Performing pairwise tests in this manner generates a quasi-ordering of alterna-
tives: this can be interpreted as the intersection quasi-ordering for all possible
cost-effectiveness orderings for all α ∈ A. Solving such linear programs is
straightforward and was done in MSExcel using the solver add-in. The result-
ing quasi-ordering for the depression example is shown as Figure 4.
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Figure 4. Quasi-ordering of alternatives for treating depression

The interpretation of the figure is that an alternative i′ is superordinate to
another alternative i′′ in the order (it is possible to trace a sequence of tail-
head arrows going from i′′ to i′) if and only if it has a higher benefit-cost score
for all feasible weights in the set A. Thus, all A-effi cient solutions to the
continuous MCO resource allocation problem (12) can be generated by starting
at one of the heads of the graph (the nodes with no outgoing arrows, either
improve coverage for SET or improve coverage for SEC ) and proceeding down
the graph selecting increments in such a way that no increment is selected before
all the increments superordinate to it in the graph until funds are exhausted.
In summary, insofar as alternatives are more superordinate or "higher up" on
this figure, they are more robust to variations in the weights attached to the
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different population groups because they will always be prioritised earlier than
alternatives less superordinate or "lower down" in the ordering.
To make this clear, the numbering of the alternatives in Figure 4 shows the

order in which increments will be selected when weights are 1/6 for population
groups SEC, SER and MOC, and 1/12 for all other population groups. The
reader can verify that no increment is selected before all the increments super-
ordinate to it are selected (e.g. "Cov for MOC" is not selected until "Cov for
SER", "Cov for SEC" and "Cov for SET" are selected).

4.3. Analysis of the discrete version

We now turn our attention to the A-effi cient solutions of the problem of the
form:

max
x

∑
i∈M1

∆ixi, ...,
∑

i∈MP

∆ixi

such that∑
i∈M

cixi ≤ B (i)∑
i∈Mk

xi = 1 ∀k ∈ P (ii)

x ∈ {0, 1}M (iii’)

(14)

This is identical to problem (12) except that constraint (iii’) ensures that
the decision variables cannot take fractional values.

As is well-known, the mono-criterion version of the problem (14), even with-
out the multiple choice constraints (ii), is NP-hard. Although customised al-
gorithms to solve this problem do exist, hand solution is generally impractical
for all but the simplest cases. Moreover, as the budget increases, items may
both enter and leave the optimal solution, hence there is no analogous ordering
to the cost-effectiveness ordering of the previous section.
In general, as in the mono-criterion environment, solving combinatorial MCO

problems is more diffi cult than solving linear MCO problems, requiring both
greater algorithmic ingenuity and computer processing time. Indeed, while
algorithms for multicriteria linear programs have been well-known for some time
(Steuer, 1986), algorithms for multicriteria integer and combinatorial problems
are very much a live research field (Ehrgott and Gandibleux, 2000; Alves and
Clímaco, 2007). To identify the A-effi cient solutions for problem (14) we use
a computer code which implements the algorithm described in Argyris et al.
(2011). The idea of the algorithm is form a single combinatorial optimisation
problem with both choice of alternative x and weights Ak variable, and solve
multiple times, progressively cutting off solutions after they have been identified.
We have run this algorithm for a budget constraint of £ 100m and show

the results of the analysis in Figure 5. For each population group, the chart
shows the proportion of A-effi cient solutions that includes each of the "mix",
"coverage" or "both" alternatives (bearing in mind that only one alternative can
be selected for each population group). The results are similar to the results
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of the analysis of the continuous version of the problem (for example, note that
in no A-effi cient solution is the dominated "mix" alternative selected; for the
population groups MIR and MOR for whom upgrading from the "coverage" to
the "both" alternative is highly cost-ineffective, that upgrade is not included in
any A-effi cient solution). This display is a variant of the core index display of
Liesiö et al (2007), although that display is designed for a context without the
multiple choice constraints (ii) of (14).

Figure 5. Proportion of time a solution is included in an A-effi cient solution

It can be seen that even with this relatively limited information about the
weights of health gains to different populations, it is possible to arrive at quite
crisp conclusions about what to do: one should implement the "both" alternative
for SER and SEC and the "coverage" alternative for MIT and MOR. Thus,
out of nine population groups for whom one has to make a decision, the model
gives recommendations about what to do for four of them. In an application
context, this could be quite useful to a decision maker who would then be able
to focus attention on the value tradeoffs that bear directly on the undecided
population groups.
We note that a similar analysis can be done in the continuous case, as de-

scribed in the previous section. One way to do this is randomly simulate
weights from A. This can be done be using standard methods to simulate
weights uniformly from the unit simplex (using algorithm 2 of Onn and Weis-
man, 2011), then rejecting (Ross, 2002) weight vectors that do not fulfill the
stipulated weight constraints. Then one can use each set of simulated weights to
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generate a priority ordering, and allocate resources by proceeding down the pri-
ority ordering ordering until the budget is exhausted. Finally, the proportion of
simulation iterations for which the coverage and both options are implemented
(as the mix option by itself is dominated in all cases) can be calculated for each
population subgroup. For 500 iterations, the resulting chart is shown in Figure
6.

Figure 6. Proportion of time an alternative is included in a simulated optimal
solution

It can be seen that while the specific numbers in Figures 5 and 6 are different,
the qualitative messages are similar. For example, implementing coverage for
MIT and MOR and both for SEC is definitely a good idea according to both
displays, and implementing both for SER is certainly worthwhile under Figure
5 and almost certainly worthwhile in Figure 6. The only population subgroup
that might be left without any change either in intervention mix or coverage
is MIR in both charts. Hence these figures underscore that what is critically
important in analysis is the problem frame, the data, and the constraints that
are placed on social values: the fine technical details of the formulation of the
model and solution procedure have rather minimal bearing on the resulting
decision recommendations.

5. Conclusion

In this paper we have outlined a formal model of the healthcare resource
allocation problem, drawing on the welfare economic theory of health. We have

20



shown how the key uncertainties about values which make parameterising such
models problematic can be easily handled within a multicriteria formulation.
We have moreover demonstrated how such formulations might be applied in
practice using an example based on the allocation of funds for the treatment of
various forms of depression.
Some years ago, Smith (1995) argued that "far from being a strength, the

stark clarity of mathematical models may make them unacceptable to the ac-
countable person" (p 154), forcing the decision maker to make unacceptably
explicit value judgements. Understanding relevant tradeoffs is a hallmark of
rational decision and we do not wish to suggest that responsible analysts should
hide from decision makers the consequences of their choices. Nevertheless, an
important insight of Smith’s paper is that an excessive focus on specifying the
maximand can distract from making decisions and engender needless conflict
- to take a trivially simple but nevertheless instructive case, a decision maker
faced with a choice between giving an equal benefit (such as a QALY) to person
A or person B only needs to know which of the two candidates is more deserving,
not quantitatively how much more deserving they are.
The advantage of the formulations presented in this paper is that they can

be used, at best to help decision makers make rational, effi cient choices in a
situation where provision of precise parameters expressing key value tradeoffs
is diffi cult; and at worst, to focus attention on the key, decision-relevant, value
tradeoffs at stake. Moreover, our approach relates more naturally to the un-
derpinning welfare economic theory of healthcare resource allocation than ap-
proaches based on specifying equity constraints requiring particular levels or
shares of health or resources for particular population subgroups, or approaches
based on defining an equity criterion amongst other criteria.
Will the set ofA-effi cient solutions be unmanageably large and diverse? Per-

haps, but under plausible conditions, this seems unlikely. Value differences that
seem unbridgeable when the debate is framed as one of principle (should the
healthcare system treat smokers and non-smokers differently?) may seem much
more manageable when presented as questions about parameter choice (how
much priority do we want to give nonsmokers over smokers in access to health-
care?). Morever, much healthcare decision making takes place in a deliberative
setting, where the key players genuinely strive to understand opposing views.
In such an environment, differences in values, and the parameter intervals rep-
resenting these differences in values, are likely to shrink rather than grow as
discussion progresses. As parameter intervals become narrower, the number of
A-effi cient solutions will become smaller and these solutions will become more
similar.
Overall, we think the multicriteria methods that we propose in this paper

have great potential in healthcare resource allocation. Healthcare is an envi-
ronment where values are inevitably contested, as it concerns the distribution of
goods of an unusually fundamental nature. The present paper has focussed on
preferences over distribution, but there are still deeper ethical issues which re-
main to be explored: for example, should the maximand be a function of health
at all, or capability, well-being or monetised economic activity? Multicriteria
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formulations similar to those which we present in this paper have a great deal to
offer health economists who wish to be able to make robust recommendations
when all these perspectives point to the same decisions, and to illuminate the
key tradeoffs when values do indeed conflict.

Acknowledgement 5. This paper was informed and stimulated by the devel-
opment of the STAR approach funded by the Health Foundation. The core STAR
team (in addition to the author) consisted of Dr Mara Airoldi, Professor Gwyn
Bevan and Dr Jenifer Smith. Additionally, the example of clinical depression
developed in Section 4 was originally developed with support from the Health
Foundation under the QQUIP programme. The author is especially grateful to
Mara Airoldi and Özlem Karsu for many discussions, to Dr Nikos Argyris for
sharing the computer implementation of the code described in Section 4.3, and
to two reviewers for insightful and constructive comments.

6. References

Airoldi M, Morton A, Smith J, Bevan G. Healthcare prioritisation at the local
level: a socio-technical approach. SYMPOSE working paper no 7. Department
of Management, London School of Economics and Political Science: London;
2011.
Airoldi M, Morton A. 2011. Portfolio Decision Analysis for population

health. In: Salo A, Keisler J, Morton A (Eds), Portfolio Decision Analysis:
improved methods for resource allocation. Springer: New York; 2011.
Allison RA, Foster JE. Measuring health inequality using qualitative data.

J Health Econ 2004;23; 505-524.
Alves MJ, Clímaco J. A review of interactive methods for multiobjective

integer and mixed integer programming. European Journal of Operational Re-
search 2007;180; 99-115.
Anand P. The integration of claims to health-care: a programming approach.

Journal of Health Economics 2003;22; 731-745.
Andrews G, Henderson S. 2000. Unmet need in psychiatry. (Eds). CUP:

Cambridge; 2000.
Argyris N, Figueira JR, Morton A. Identifying preferred solutions to Multi-

Objective Binary Optimisation problems, with an application to the Multi-
Objective Knapsack Problem. Journal of Global Optimization 2011;49; 213-235.
Atkinson AB. On the measurement of inequality. Journal of Economic The-

ory 1970;2; 244-263.
Baltussen R, Niessen L. Priority setting of health interventions: the need

for multi-criteria decision analysis. Cost effectiveness and resource allocation
2006;4.
Belton V, Stewart TJ. Multiple Criteria Decision Analysis: an integrated

approach. Kluwer: Boston; 2002.

22



Bevan G, Airoldi M, Morton A, Oliveira M, Smith J. Estimating health and
productivity gains in England from selected interventions. Health Foundation:
London; 2007.
Birch S, Gafni A. Cost-Effectiveness Utility Analyses - Do Current Decision

Rules Lead Us to Where We Want to Be. Journal of Health Economics1992;11;
279-296.
Birch S, Gafni A. Changing the Problem to Fit the Solution - Johannesson

andWeinstein (Mis) Application of Economics to Real-World Problems. Journal
of Health Economicsn 1993;12; 469-476.
Cleary S, Mooney G, McIntyre D. Equity and Effi ciency in HIV-Treatment

in South Africa: The Contribution of Mathematical Programming to Priority
Setting. Health Economics 2010;19; 1166-1180.
Culyer AJ. The normative economics of healthcare finance and provision.

Oxford Review of Economic Policy 1989;5; 34-55.
Dantzig G. Linear programming and extensions. Princeton: Princeton Uni-

versity Press; 1998.
Dasgupta P, Sen A, Starrett D. Notes on Measurement of Inequality. Journal

of Economic Theory 1973;6; 180-187.
Devlin NJ, Sussex J. 2011. Incorporating Multiple Criteria in HTA: Methods

and Processes. (Eds). Offi ce of Health Economics: London; 2011.
Dolan P, Edlin R, Tsuchiya A. The relative value of health gains to different

beneficiaries. Final Report RM03/JH11. Report to the National Collaborating
Centre for Research Methodology. http://www.haps.bham.ac.uk/publichealth/methodology/docs/publications/JH11_Social_Value_QALY_Final_Report_Paul_Dolan_et_al_2008.pdf.
Accessed 22/02/10.; 2008.
Dolan P, Shaw R, Tsuchiya A, Williams A. QALY maximisation and peo-

ple’s preferences: a methodological review of the literature. Health Economics
2005;14; 197 - 208.
Drummond KF, Sculpher MJ, Torrance GW, O’Brien BJ, Stoddart GL.

Methods for the Economic Evaluation of Health Care Programmes. OUP: Ox-
ford; 2005.
Earnshaw SR, Dennett SL. Integer/linear mathematical programming mod-

els - A tool for allocating healthcare resources. Pharmacoeconomics 2003;21;
839-851.
Ehrgott M. Multicriteria optimisation. Springer: Berlin; 2005.
Ehrgott M, Gandibleux X. A survey and annotated bibliography of multi-

objective combinatorial optimization. OR Spektrum 2000;22; 425-460.
Epstein DM, Chalabi Z, Claxton K, Sculpher M. Effi ciency, equity, and bud-

getary policies: Informing decisions using mathematical programming. Medical
Decision Making 2007;27; 128-137.
Epstein D, Jimenez-Rubio D, Smith P, Suhrcke M. Social determinants of

health: an economic perspective. Health Economics 2009;18; 495-502.
Figueira JR, Greco S, Ehrgott M. 2005. Multiple Criteria Decision Analysis:

State of the Art Surveys. (Eds). Springer: New York; 2005.
Fleurbaey M. Assessing Risky Social Situations. Journal of Political Econ-

omy 2010;118; 649-680.

23



Hauck K, Smith PC, Goddard M. The economics of priority setting for
healthcare: a literature review. World Bank: Washington, DC; 2004.
Johannesson M, Weinstein MC. On the Decision Rules of Cost-Effectiveness

Analysis. Journal of Health Economics 1993;12; 459-467.
Keeney RL, Raiffa H. Decisions with multiple objectives: preferences and

value tradeoffs. Wiley: Chichester; 1976.
Kellerer H, Pferschy U, Pisinger D. Knapsack Problems. Springer-Verlag:

Berlin; 2004.
Kolm SC. 1969. The optimal production of social justice. In: Guitton H,

Margolis J (Eds), Public Economics. St Martin: New York; 1969.
Liesiö J, Mild P, Salo A. Preference programming for robust portfolio model-

ing and project selection. European Journal of Operational Research 2007;181;
1488-1505.
Morton A, Airoldi M. Incorporating health inequalities considerations in

PCT priority setting. Operational Research Group, Department of Manage-
ment. London School of Economics and Political Science; 2009.
Morton A, Bevan G, Airoldi M, Oliveira M, Smith J. Estimating the health

gains and cost impact of treatment for depression in England. Health Founda-
tion: London; 2008.
Mullen PM. Quantifying priorities in healthcare: transparency or illusion.

Health Services Management Research 2004;17; 47-58.
NICE. Depression: management of depression in primary and secondary

care. NICE: London; 2004.
Onn S, Weissman I. Generating uniform random vectors over a simplex with

implications to the volume of a certain polytope and to multivariate extremes.
Ann Oper Res 2011;189; 331-342.
Østerdal LP. Axioms for healthcare resource allocation. Journal of Health

Economics 2005;24; 679-702.
Payne G, Laporte A, Deber R, Coyte PC. Counting backward to healthcare’s

future: using time-to-death modeling to identify changes in end-of-life morbid-
ity and the impact of aging on health expenditures. The Millbank Quarterly
2007;85; 213-257.
Ross S. Simulation. Academic Press: San Diego; 2002.
Sen A. On economic inequality: enlarged editions. Clarendon Press: Oxford;

1997.
Shorrocks AF. Ranking Income Distributions. Economica 1983;50; 3-17.
Singleton N, Bumpstead R, O’Brien M, Lee A, Meltzer H. Psychiatric mor-

bidity among adults living in private households. HMSO: London; 2001.
Sinha P, Zoltners AA. Multiple-Choice Knapsack Problem. Operations Re-

search 1979;27; 503-533.
Smith P. Large scale models and large scale thinking: the case of the health

services. Omega-International Journal of Management Science 1995;23; 145-157.
Sonne-Schmidt C, Tarp F, Østerdal LP. Ordinal multidimensional inequality.

Unpublished working paper, University of Southern Denmark, Odense.
Steuer RE. Multiple Criteria Optimization: Theory, Computation and Ap-

plication. Wiley: New York; 1986.

24



Stinnett AA, Paltiel AD. Mathematical programming for the effi cient allo-
cation of health care resources. Journal of Health Economics 1996;15; 641-653.
Wagstaff A. QALYs and the equity-effi ciency trade-off. Journal of Health

Economics 1991;10; 21-41.
Wagstaff A. Inequality aversion, health inequalities and health achievement.

Journal of Health Economics 2002;21; 627-641.
Weinstein M, Zeckhauser R. Critical ratios and effi cient allocation. Journal

of Public Economics 1973;2; 147-157.
Williams A, Cookson R. 2000. Equity in health. In: Culyer AJ, Newhouse

JP (Eds), Handbook of Health Economics. Elsevier: Amsterdam; 2000.
Wilson ECF, Rees J, Fordham RJ. Developing a prioritisation framework

in an English Primary Care Trust. Cost effectiveness and resource allocation
2006;4.

25


